1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2025-05-09 22:56:01 +02:00

360 Commits

Author SHA1 Message Date
58b7b6e9d8 Version 0.6.0
All checks were successful
continuous-integration/drone/push Build is passing
2022-09-02 16:35:58 +03:00
ffdf1eca7b setup.py: remove Python 3.7 support
I had already set the minimum to Python 3.8 elsewhere, but forgot
to do it here. I am not sure if Python 3.7 will still work here or
not so let's just keep it in sync with the other docs.
2022-09-02 16:34:16 +03:00
59742e47f1 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --with dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==
2022-09-02 16:32:04 +03:00
9c741b1d49 poetry.lock: sync latest deps 2022-09-02 16:31:19 +03:00
21e9948a75 pyproject.toml: manually updated all deps
Update all deps to their latest versions on pypi.org and remove the
explicit dependency on SQLAlchemy.
2022-09-02 16:30:40 +03:00
f64435fc9d tests/test_check.py: add missing excludes 2022-09-02 16:24:33 +03:00
566c2b45cf Remove Excel support
I never used this and it seems xlrd doesn't even support .xlsx any-
more anyways. If this was needed I could theoretically use openpyxl
but I'd rather just stick to CSV.
2022-09-02 16:14:24 +03:00
41b813be6e CHANGELOG.md: add not about exclude logic 2022-09-02 16:03:51 +03:00
040e56fc76 Improve exclude function
When a user explicitly requests that a field be excluded with -x we
skip that field in most checks. Up until now that did not include
the item-based checks using a transposed dataframe because we don't
know the metadata field names (labels) until we iterate over them.

Now the excludes are respected for item-based checks.
2022-09-02 15:59:22 +03:00
1f76247353 csv_metadata_quality/app.py: rework exclude/skip
Instead of processing the excludes inside the for column loop we do
it once before and then only need to check if the current column is
in the list.
2022-09-02 10:35:04 +03:00
2e489fc921 Add new data/test-geography.csv test file
All checks were successful
continuous-integration/drone/push Build is passing
This file has metadata to test different scenarios related to chec-
king and fixing missing regions.
2022-09-01 16:57:29 +03:00
117c6ca85d csv_metadata_quality/check.py: missing region fixes
Port over the recent fixes and logic improvements to regions from
fix.py.
2022-09-01 16:38:35 +03:00
f49214fa2e csv_metadata_quality/fix.py: fix bug in regions
We need to make sure we're only manipulating the regions if we have
any missing. The previous code was always manipulating the existing
row, even when there were no missing regions, which resulted in new
values like "Eastern Africa||".
2022-09-01 16:15:32 +03:00
7ce20726d0 csv_metadata_quality/fix.py: minor change
Print missing regions when we know they are missing, instead of do-
ing another check later and looping over them again.
2022-09-01 16:03:49 +03:00
473be5ac2f csv_metadata_quality/fix.py: don't add "not found" region
country_converter returns the literal "not found" string if a coun-
try cannot be found. In that case we do not want to consider that as
a region!
2022-09-01 15:46:21 +03:00
7c61cae417 csv_metadata_quality/fix.py: silence warning
By default country_converter prints "not found in regex" if a coun-
try is not found. We can silence this by switching the logging lev-
el to something above WARNING.
2022-09-01 15:44:50 +03:00
ae16289637 csv_metadata_quality/fix.py: Minor change
The country_converter documentation says we should instantiate the
CountryConverter() class once instead of calling coco.convert() in
each iteration of the loop so we don't end up loading the data file
more than once.
2022-09-01 15:40:45 +03:00
fdb7900cd0 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --with dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==
2022-09-01 11:21:10 +03:00
9c65569c43 poetry.lock: run poetry update 2022-09-01 08:44:12 +03:00
0cf0bc97f0 csv_metadata_quality/fix.py: fix logic error again
All checks were successful
continuous-integration/drone/push Build is passing
It seems there was another logic error raised by the test in pytest.
With my real data, it was enough to check if the region column was
None, but with my test I was explicitly setting the region to "" (an
empty string). So to be really sure we should check if the string
is not None *and* if its length is greater than 0.
2022-08-03 20:51:14 +03:00
40c3585bab csv_metadata_quality/fix.py: fix logic error
Fix string concatenation with existing regions.
2022-08-03 18:26:08 +03:00
b9c44aed7d csv_metadata_quality/fix.py: fix logic issue
All checks were successful
continuous-integration/drone/push Build is passing
Forgot to return the row as-is if we don't find any countries.
2022-08-02 10:17:30 +03:00
032a1db392 README.md: Add note about missing regions
All checks were successful
continuous-integration/drone/push Build is passing
2022-07-28 16:58:01 +03:00
da87531779 CHANGELOG.md: Add note about adding missing regions 2022-07-28 16:54:05 +03:00
689ee184f7 Add unsafe check to add missing regions 2022-07-28 16:52:43 +03:00
344993370c Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2022-07-08 15:50:42 +03:00
00b4dca185 poetry.lock: run poetry update 2022-07-08 15:50:03 +03:00
5a87bf4317 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2022-03-21 14:37:38 +03:00
c706719d8b poetry.lock: run poetry update 2022-03-21 14:37:03 +03:00
e7ea8ef9f0 README.md: add note about spdx-license-list
All checks were successful
continuous-integration/drone/push Build is passing
This Python module was deprecated in favor of using the SPDX license
data directly.

See: https://github.com/spdx/license-list-data
2022-01-30 13:27:20 +03:00
ea050376fc Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2022-01-30 13:26:37 +03:00
4ba615cd41 poetry.lock: run poetry update 2022-01-30 13:26:04 +03:00
b0d46cd864 pyproject.toml: update black
It's no longer in beta!
2022-01-30 13:22:47 +03:00
3ee9319d84 pyproject.toml: bump flake8 2022-01-30 13:21:09 +03:00
4d5f4b5abb pyproject.toml: update pycountry
Seems to be a few major versions from 19.x.x to 21.x.x. All tests
passing in pytest so it's probably fine.
2022-01-30 13:15:38 +03:00
98d38801fa pyproject.toml: update requests and requests-cache 2022-01-30 13:11:01 +03:00
dad7a8765c .github/workflows/python-app.yml: use Python 3.10
That's what I use for testing locally. Note that we need to quote
the version here because otherwise GitHub Actions will interpret it
as 3.1 due to how YAML works.
2022-01-30 13:06:51 +03:00
d126304534 README.md: update note about Python version 2022-01-30 13:05:36 +03:00
38c2584863 .drone.yml: don't test on Python 3.7 anymore
Pandas 1.4.0 has a minimum Python requirement of 3.8.

See: https://pandas.pydata.org/docs/whatsnew/v1.4.0.html
2022-01-30 13:04:52 +03:00
e94a4539bf pyproject.toml: bump Pandas to v1.4.0
As of Pandas v1.4.0 the minimum Python version is 3.8.

See: https://pandas.pydata.org/docs/whatsnew/v1.4.0.html
2022-01-30 13:03:56 +03:00
a589d39e38 poetry.lock: run poetry lock 2022-01-29 16:26:16 +03:00
d9e427a80e pyproject.toml: don't install ipython
It always complains about running in a virtual environment anyways,
and I can use the one from the OS instead.
2022-01-29 16:25:58 +03:00
8ee5e2e306 setup.py: denote that Python 3.10 works
All checks were successful
continuous-integration/drone/push Build is passing
I have been using Python 3.10 for months, and already added it to
the CI builds.
2022-01-29 16:08:01 +03:00
490701f244 Run more CLI tests in CI
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-24 14:47:25 +02:00
e1b270cf83 CHANGELOG.md: add note about dropping invalid AGROVOC values
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-23 12:47:42 +02:00
b7efe2de40 data/test.csv: update invalid AGROVOC entry
Now that we can drop invalid AGROVOC values we should have a valid
value and an invalid value here. Depending on how the checker is
invoked we will either print a warning or drop the invalid value.
2021-12-23 12:45:38 +02:00
c43095139a tests/test_check.py: add tests for dropping invalid AGROVOC 2021-12-23 12:44:32 +02:00
a7727b8431 Add support for dropping invalid AGROVOC terms
Requires --agrovoc-fields <field.name> to do the actual validation,
and -d to drop invalid ones.
2021-12-23 12:43:55 +02:00
7763a021c5 csv_metadata_quality/fix.py: sort imports with isort
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-15 23:15:02 +02:00
3c12ef3f66 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-12-15 23:11:44 +02:00
aee2438e94 poetry.lock: run poetry update 2021-12-15 23:10:27 +02:00
a351ba9706 CHANGELOG.md: add notes about ftfy 2021-12-15 22:09:01 +02:00
e4faf114dc csv_metadata_quality/util.py: update for ftfy 6.0
The sequence_weirdness() heuristic is deprecated. Now we should use
is_bad().

See: https://ftfy.readthedocs.io/en/v6.0/heuristic.html
See: https://github.com/rspeer/python-ftfy/blob/master/CHANGELOG.md#version-60-april-2-2021
2021-12-15 21:58:07 +02:00
ff49a80432 csv_metadata_quality/fix.py: configure ftfy
Don't replace smart quotes in ftfy. If our text has them we should
keep them.
2021-12-15 21:51:51 +02:00
8b15154285 pyproject.toml: use ftfy 6.0
Lots of improvements here! Improvements to heuristics and a new way
to configure which fixes get applied.

See: https://github.com/rspeer/python-ftfy/blob/master/CHANGELOG.md#version-60-april-2-2021
2021-12-15 21:48:56 +02:00
5854f8e865 CHANGELOG.md: add note about unnecessary Unicode 2021-12-15 13:56:31 +02:00
e7322efadd csv_metadata_quality/app.py: move unnecessary Unicode fix
We actually want to do this after we try to fix mojibake with ftfy.
These "unnecessary" Unicode characters could actually help ftfy in
some cases because often times they indicate that some character
from another encoding was there before (like an accent, dash, or
smart quote).
2021-12-15 13:53:25 +02:00
95015febbd csv_metadata_quality/fix.py: fix thin spaces
All checks were successful
continuous-integration/drone/push Build is passing
Replace thin spaces with normal spaces. Sometimes I see these get
mis handled on Windows machines and they end up as "?" or so.
2021-12-09 23:22:53 +02:00
cef6c66b30 CHANGELOG.md: start next changes 2021-12-09 23:21:58 +02:00
9905e183ea Bump version to 0.6.0-dev 2021-12-09 23:21:30 +02:00
cc34db7ff8 Version 0.5.0
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-08 15:29:46 +02:00
b79e07b814 CHANGELOG.md: Add note about countries without regions 2021-12-08 15:21:45 +02:00
865b950c33 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-12-08 15:20:22 +02:00
6f269ca6b1 poetry.lock: run poetry update 2021-12-08 15:19:49 +02:00
120e8cf09f tests/test_check.py: add checks for countries without regions 2021-12-08 15:18:50 +02:00
a4eb79f625 data/test.csv: add data for countries without regions check 2021-12-08 15:17:55 +02:00
ccc2a73456 Add check for countries without matching regions
If we have country "Kenya" we should have region "Eastern Africa"
according to the UN M.49 geolocation scheme.
2021-12-08 15:02:20 +02:00
ad33195ba3 README.md: adjust intro
All checks were successful
continuous-integration/drone/push Build is passing
Makes the badges not wrap and looks better in my opinion.
2021-12-08 11:36:34 +02:00
72fe38972e Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-12-05 16:29:37 +02:00
04232d0ede poetry.lock: run poetry update 2021-12-05 16:29:09 +02:00
f5fa33bbc6 CHANGELOG.md: add title in citation note 2021-12-05 16:23:39 +02:00
1b978159c1 data/text.csv: Add data for title in citation test 2021-12-05 16:23:06 +02:00
4d5696c4cb csv_metadata_quality/check.py: update title in citation check
Initialize the titles and citations before the for loop so we can
access them later. This makes it easier to check if the item actua-
lly has a citation.
2021-12-05 16:21:44 +02:00
e02678cd7c tests/test_check.py: add tests for title in citation 2021-12-05 16:01:11 +02:00
01b4354a14 tests/test_check.py: fix comment 2021-12-05 15:58:25 +02:00
3b40a68279 Add check for title in citation
This checks if the item title exists in the citation. If it is not
present it could just be missing, or could have minor differences
in the whitespace, accents, etc.
2021-12-05 15:52:42 +02:00
999cc65097 csv_metadata_quality/app.py: adjust mojibake check
If unsafe fixes (-u) are enabled then we don't need to do the check
first before actually fixing them. Doing the check first creates e-
tra output that needs to be reviewed by the user.
2021-12-05 15:18:35 +02:00
a7c3be280d Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-11-27 12:26:21 +02:00
69f68e0a72 poetry.lock: Run poetry update 2021-11-27 12:25:40 +02:00
c941a90944 .drone.yml: Test on Python 3.10
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-11 20:09:32 +03:00
c95261f522 CHANGELOG.md: Add note about fix.newlines
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-08 14:37:12 +03:00
787fa9e8d9 Add field name to fix.newlines output 2021-10-08 14:36:43 +03:00
82261f7fe0 tests/test_check.py: Run black
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-06 22:10:26 +03:00
8a27fb2589 Add check for missing DOIs
All checks were successful
continuous-integration/drone/push Build is passing
Sometimes an editor includes a DOI in the citation field, but does
not add a standalone DOI field.
2021-10-06 21:25:39 +03:00
831ce979c3 CHANGELOG.md: Clarify regex fixes 2021-10-06 21:23:35 +03:00
58ef62fbcd Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-10-06 21:20:35 +03:00
8c59f57e76 poetry.lock: Run poetry update 2021-10-06 21:19:54 +03:00
72dd3e7272 CHANGELOG.md: Add notes about regexes 2021-10-06 19:35:59 +03:00
6ba16d5d4c csv_metadata_quality/check.py: Fix duplicate checker
Fix the incorrect type field regex, and improve the title regex to
consider dcterms.title and dc.title (along with the DSpace language
variants like dc.title[en_US]), but ignore dc.title.alternative.

See: https://regex101.com/r/I4m06F/1
2021-10-06 19:32:40 +03:00
81069259ba CHANGELOG.md: Add note about bibliographicCitation
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-06 16:16:51 +03:00
54ab869297 csv_metadata_quality/experimental.py: Adjust citation match
We need to match both of these citation fields:

- dc.identifier.citation
- dcterms.bibliographicCitation
2021-10-06 16:13:10 +03:00
22b359c8a8 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-09-27 14:15:01 +03:00
3e06788d88 poetry.lock: Run poetry update 2021-09-27 14:11:21 +03:00
3c41cc283f Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-09-06 21:04:05 +03:00
5741e94571 poetry.lock: Run poetry update 2021-09-06 21:03:30 +03:00
215d61c188 pyproject.toml: limit SQLAlchemy to < 1.4.23
SQLAlchemy gets pulled in by csvkit's agate-sql dependency and there
is currently an issue with Poetry's parsing of the SQLAlchemy 1.4.23
constraints. Temporarily explicitly install a version of SQLAlchemy
that works (can remove later once Poetry fixes this). Anyways, I am
not using any SQLAlchemy features that I know of.

See: https://github.com/python-poetry/poetry/issues/4402
2021-09-06 21:01:09 +03:00
11ddde3327 data/test.csv: Update mojibake example
All checks were successful
continuous-integration/drone/push Build is passing
I was trying to find where I got this one and it seems to have been
the other way around. Doesn't matter here only that I was curious.
2021-08-19 15:48:41 +03:00
a347878d43 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-08-12 21:49:36 +03:00
a89bc331f0 poetry.lock: Run poetry update
Lots of minor dependencies updates. All tests still passing with
pytest.
2021-08-12 21:47:46 +03:00
af3493c724 CITATION.cff: Remove YAML formatting
All checks were successful
continuous-integration/drone/push Build is passing
GitHub says it can't parse my CITATION.cff file. The example in the
docs shows version 1.2.0 also, I wonder if that's relevant.

See: https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
2021-07-28 21:23:30 +03:00
52644bf83e Add CITATION.cff
Created with the cffinit tool:

https://citation-file-format.github.io/cff-initializer-javascript/
2021-07-28 21:11:11 +03:00
c8f5539d21 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-07-06 15:47:44 +03:00
382d0d6aed Run poetry update 2021-07-06 15:37:57 +03:00
b8f4be9ebb pyproject.toml: Update pytest-clarity and black
These seem to have much newer versions that didn't get updated in
this project due to the version pinning selector I was using with
poetry.

In the case of pytest-clarity the previous version was 0.3.1 and
the version selector was a caret (^), which will never update the
left-most (major) number. Now they seem to be on 1.x.x so it will
be OK in the future.

In the case of black, they use weird numbering so it's anyone's
guess how this will work! Luckily it's only used for linting and
formatting.
2021-07-06 15:30:41 +03:00
4e2eab68b0 Update requests-cache
Apparently we were stuck on an older version of requests-cache due
to the fact that we were using the caret, which will never update
the left-most (major) version. Upstream requests-cache is currently
version 0.6.4, and there seems to have been some changes to the API.
2021-07-06 15:24:39 +03:00
55165cb4ce Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-06-14 12:52:47 +03:00
93d3eabfba poetry.lock: Run poetry update 2021-06-14 12:52:28 +03:00
a8fe623f4c csv_metadata_quality/check.py: Remove unnecessary pass
All checks were successful
continuous-integration/drone/push Build is passing
LGTM warned that these pass statements are not necessary.

See: https://lgtm.com/rules/910088/
2021-04-20 08:20:13 +03:00
dbc0437d59 CHANGELOG.md: Add note about Python deps
All checks were successful
continuous-integration/drone/push Build is passing
2021-04-14 16:16:02 +03:00
96ce1daa90 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have
their versions pinned with ==.
2021-04-14 16:15:28 +03:00
3adb52d7c0 poetry.lock: Run poetry update 2021-04-14 16:14:37 +03:00
f958d1879f poetry.lock: Run poetry update
All checks were successful
continuous-integration/drone/push Build is passing
2021-04-02 16:19:16 +03:00
bd8943f36a csv_metadata_quality/app.py: Don't crash if fields are missing
All checks were successful
continuous-integration/drone/push Build is passing
We don't need to crash if someone feeds us a CSV file that is miss-
ing commont DSpace fields like title, type, and subject.
2021-03-21 19:47:29 +02:00
28f9026286 README.md: Minor edit
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-19 16:26:31 +02:00
cfe09f7126 Add SPDX short license identifier to all Python files
See: https://spdx.github.io/spdx-spec/appendix-V-using-SPDX-short-identifiers-in-source-files/
2021-03-19 16:04:40 +02:00
8eddb76aab Bump version to 0.4.8-dev
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-19 11:53:56 +02:00
a04dbc50db Add notes about checking and fixing mojibake 2021-03-19 11:48:27 +02:00
28335ed159 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have
their versions pinned with ==.
2021-03-19 10:29:15 +02:00
773a0a2695 poetry.lock: Run poetry update 2021-03-19 10:28:55 +02:00
39a4b1a487 Add mojibake to data/test.csv and tests 2021-03-19 10:28:33 +02:00
898bb412c3 Add checks and unsafe fixes for mojibake
This detects whether text has likely been encoded in one encoding
and decoded in another, perhaps multiple times. This often results
in display of "mojibake" characters.

For example, a file encoded in UTF-8 is opened as CP-1252 (Windows
Latin codepage) in Microsoft Excel, and saved again as UTF-8. You
will see strings like this in the resulting file:

    - CIAT Publicaçao
    - CIAT Publicación

The correct version of these in UTF-8 would be:

    - CIAT Publicaçao
    - CIAT Publicación

I use a code snippet from Martijn Pieters on StackOverflow to de-
tect whether a string is "weird" as determined by the excellent
"fixes text for you" (ftfy) Python library, then check if a weird
string encodes as CP-1252 or not. If so, I can try to fix it.

See: https://stackoverflow.com/questions/29071995/identify-garbage-unicode-string-using-python
2021-03-19 10:22:21 +02:00
e92ec5d371 README.md: Add note about duplicate checking
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-17 10:12:03 +02:00
f816e17fe7 Version 0.4.7
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-17 10:00:34 +02:00
9061c7c79b setup.py: Remove beta tag
I think this is only used by pypi.org?
2021-03-17 10:00:09 +02:00
661d05b977 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have
their versions pinned with ==.
2021-03-17 09:58:35 +02:00
652b7ea98c CHANGELOG.md: Add note about poetry dependencies 2021-03-17 09:58:02 +02:00
65da6e9b05 poetry.lock: Run pipenv update 2021-03-17 09:57:31 +02:00
a313b7527a CHANGELOG.md: Add note about duplicate items 2021-03-17 09:55:07 +02:00
51ee370697 data/test.csv: Add duplicate item 2021-03-17 09:54:14 +02:00
e8422bfa74 tests/test_check.py: Add test for duplicate items 2021-03-17 09:54:02 +02:00
9f2dc0a0f5 Add support for detecting duplicate items
This uses the title, type, and date issued as a sort of "key" when
determining if an item already exists in the data set.
2021-03-17 09:53:07 +02:00
14010896a5 csv_metadata_quality/experimental.py: Move all imports to top of file
All checks were successful
continuous-integration/drone/push Build is passing
PEP8 recommends keeping imports at the top of the file. Also, I had
to re-work the issn/isbn so they didn't conflict with the functions
in check.py (flake8 warned about them being redefined).

Imports sorted with isort.

See: https://www.python.org/dev/peps/pep-0008/#imports
2021-03-16 16:13:34 +02:00
ab3af2ec62 csv_metadata_quality/check.py: Reformat with black 2021-03-16 16:12:33 +02:00
1aa2084230 CHANGELOG.md: Add note about checks 2021-03-16 16:11:24 +02:00
330a7b7b9c Don't unnecessarily rewrite DataFrames for checks
By using df[column] = df[column].apply(check...) we were re-writing
the DataFrame every time we returned from a check. We don't actuall
y need to return a value at all, as the point of checks is to print
a warning to the screen. In Python a "return" statement without a v
ariable returns None.

I haven't measured the impact of this, but I assume it will mean we
are faster and use less memory.
2021-03-16 16:04:19 +02:00
9a5e3fd6ef README.md: Add TODO about detecting duplicates 2021-03-16 14:03:26 +02:00
ed084da08c CHANGELOG.md: Add note about multi-value separators
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-14 21:04:19 +02:00
10612cf891 Remove checks for invalid multi-value separators
Now that I no longer treat the fix for these as "unsafe" I don't a
ctually need to check for them—I can just fix them when I see them.
2021-03-14 21:01:21 +02:00
3656e9f976 Update CI workflows to use DCTERMS instead of DC
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-14 15:52:51 +02:00
c9c277f8df csv_metadata_quality/app.py: Update help text
All checks were successful
continuous-integration/drone/push Build is passing
Use DCTERMS fields where possible.
2021-03-14 10:52:58 +02:00
fb35afd937 CHANGELOG.md: Add note about requests cache 2021-03-14 09:13:51 +02:00
0e9176f0a6 csv_metadata_quality/check.py: requests cache
Allow overriding the directory for the requests cache. In the case
of csv-metadata-quality-web, which currently runs on Google's App
Engine, we can only write to /tmp.
2021-03-14 09:07:35 +02:00
1008acf35e Always fix invalid multi-value separators
All checks were successful
continuous-integration/drone/push Build is passing
This is no longer class-ified as "unsafe" as I have yet to see a
case where this was intentional, and it always causes issues when
you import the data in a DSpace repository.
2021-03-13 12:59:45 +02:00
f00a07e2cd README.md: Reorganize unsafe functionality
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-13 11:56:52 +02:00
46098861ed poetry.lock: Run poetry update
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-11 22:45:32 +02:00
fa84cfa440 Bump version to 0.4.6-dev 2021-03-11 22:44:36 +02:00
6cc1401f88 pyproject.toml: Minimum Python is technically 3.7.1
All checks were successful
continuous-integration/drone/push Build is passing
See: https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.2.0.html
2021-03-11 13:41:58 +02:00
ad2cda8a41 README.md: Add note about SPDX license identifiers
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-11 12:21:34 +02:00
dc6920802e .github/workflows/python-app.yml: Use Python 3.9
I now use this version in my development environment. Eventually I
should add a matrix of versions to use, but I don't know the GitHub
Actions syntax well enough yet.
2021-03-11 12:17:57 +02:00
6ca449d8ed README.md: Update note about Python 3.8 to 3.8+
Currently the lower bound on Python version support is 3.7 because
of Pandas 1.2.0 requiring it, but I use 3.9 on my development box.
2021-03-11 12:16:07 +02:00
1554cfd5c9 Version 0.4.6 2021-03-11 12:14:54 +02:00
00b8faad6d CHANGELOG.md: Fix headers 2021-03-11 12:13:22 +02:00
b19d81abdd .drone.yml: We need some stuff to build pyicu now
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-11 12:07:28 +02:00
a0ea829f5c csv_metadata_quality/fix.py: Fixes should be green 2021-03-11 11:47:24 +02:00
0089efa914 tests/test_check.py: Use dcterms.subject instead of dc.subject
Trying to move some old DC fields to DCTERMS.
2021-03-11 11:45:25 +02:00
3dbe656f9f Update requirements
Some checks failed
continuous-integration/drone/push Build is failing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have
their versions pinned with ==.
2021-03-11 11:11:19 +02:00
7ad821dcad CHANGELOG.md: Add note about poetry dependencies 2021-03-11 11:10:27 +02:00
cd876c4fb3 poetry.lock: Run poetry update 2021-03-11 11:10:02 +02:00
d88ea56488 csv_metadata_quality/check.py: Move all imports to top of file
PEP8 recommends keeping imports at the top of the file. Also, I had
to re-work the issn/isbn so they didn't conflict with the functions
in check.py (flake8 warned about them being redefined).

Imports sorted with isort.

See: https://www.python.org/dev/peps/pep-0008/#imports
2021-03-11 10:52:20 +02:00
e0e3ca6c58 CHANGELOG.md: Add notes about DCTERMS in data/test.csv 2021-03-11 10:50:52 +02:00
abae8ca4fb data/test.csv: Move some DC fields to DCTERMS
The original Dublin Core elements set was superceded by DCTERMS in
2008 and we have started using them in our DSpace repository so I
think it's good to update them in our test data. Old DC fields are
still checked and fixed in this tool, though.

It's worth nothing that currently supported DSpace versions (4, 5,
and 6) all have hard-coded a few fields like dc.title internally so
we can't migrate those to their DCTERMS counterparts just yet.
2021-03-11 10:49:05 +02:00
d7d4d4efca CHANGELOG.md: Add note about SPDX license identifiers 2021-03-11 10:37:27 +02:00
5318953150 tests/test_check.py: Add tests for licenses 2021-03-11 10:36:26 +02:00
3b17914002 data/test.csv: Add invalid SPDX license
Now we are checking dcterms.license against the list of SPDX license
identifiers using https://pypi.org/project/spdx-license-list/.
2021-03-11 10:34:58 +02:00
6e4b0e5c1b Add validation of SPDX license identifiers
Currently this only checks the dcterms.license field and the result
will only be a warning.
2021-03-11 10:33:16 +02:00
b16fa9121f pyproject.toml: Add csv-metadata-quality as a script
All checks were successful
continuous-integration/drone/push Build is passing
For some reason I stopped having csv-metadata-quality available in
my poetry environment after install. It seems I need to add it as a
poetry tool script? I had already done this in setup.py years ago,
which works for regular python setup.py installs, but hadn't needed
to do it in poetry for a year or more that I've been using it, until
now.
2021-03-08 09:50:05 +02:00
202bda862a Bump version to 0.4.5
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-04 21:38:10 +02:00
7479310ac0 setup.py: Bump version to 0.4.4
I missed to increase this when I actually released version 0.4.4 so
I will do it in a separate commit now before I bump the version to
0.4.5.
2021-03-04 21:35:08 +02:00
98a91bc9c2 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-03-04 21:33:33 +02:00
fc5bedcc5c CHANGELOG.md: Add poetry update 2021-03-04 21:32:46 +02:00
44d12d771a poetry.lock: Run poetry update 2021-03-04 21:32:21 +02:00
4a7000e975 README.md: Add more ideas to do 2021-03-04 21:26:53 +02:00
27b2d81ca8 CHANGELOG.md: Add note about dcterms.issued
All checks were successful
continuous-integration/drone/push Build is passing
2021-02-28 15:14:39 +02:00
91ebd0f606 README.md: Update TODOs
A few of these date things have been addressed.
2021-02-28 15:13:36 +02:00
dd2cfae047 csv_metadata_quality/app.py: Match dcterms.issued for dates
We used to only check fields that had "date" in their name because
we were using DSpace's default dc.date.* fields. Now we are using
dcterms.issued so I will add that one as well.
2021-02-28 15:11:06 +02:00
d76e72532a Move unreleased changes to v0.4.4
All checks were successful
continuous-integration/drone/push Build is passing
2021-02-21 13:25:22 +02:00
13980d2dde CHANGELOG.md: Add note about colored output 2021-02-21 13:12:26 +02:00
9aaaa62461 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-02-21 13:10:52 +02:00
a7fc5a246c Colorize output
Some checks failed
continuous-integration/drone/push Build is failing
Messages will be colorized:

- Red for errors
- Yellow for warnings or information
- Green for fixes
2021-02-21 13:01:25 +02:00
7fb8acb866 Add colorama for colored output
Red for errors, yellow for warnings or information, and green for
fixes.
2021-02-21 13:00:31 +02:00
9f5d2c2c4f poetry.lock: Run poetry update
All checks were successful
continuous-integration/drone/push Build is passing
2021-02-15 15:13:12 +02:00
202abf140c CHANGELOG.md: Add note about poetry
All checks were successful
continuous-integration/drone/push Build is passing
2021-02-04 21:48:12 +02:00
0cd6d3dfe6 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-02-04 21:46:49 +02:00
a458beac55 poetry.lock: Run poetry update 2021-02-04 21:45:30 +02:00
e62ecb0a8f CHANGELOG.md: Add note about new date format 2021-02-04 21:43:44 +02:00
de92f32ab6 csv_metadata_quality/check.py: More date formats
We should also allow ISO 8601 extended in combined date and time
format. DSpace does not have a problem with dates in this format
and I have found some metadata that uses this date format.

For example: 2020-08-31T11:04:56Z

See: https://en.wikipedia.org/wiki/ISO_8601
2021-02-04 21:39:14 +02:00
dbbbc0944a README.md: Add handle to citation
All checks were successful
continuous-integration/drone/push Build is passing
2021-01-27 10:33:37 +02:00
d17bf3033c README.md: Add citation 2021-01-27 10:32:26 +02:00
2ec52f1b73 README.md: Update description
All checks were successful
continuous-integration/drone/push Build is passing
2021-01-26 15:43:41 +02:00
aa1abf15a7 README.md: Adjust title 2021-01-26 15:35:21 +02:00
cbf94490f2 Version 0.4.3 2021-01-26 15:22:40 +02:00
f3d0d5ef07 setup.py: Remove Python 3.6
I actually removed Python 3.6 support a few weeks ago after updating
to Pandas 1.2.0, but forgot to update this.
2021-01-26 15:22:08 +02:00
4b7b99c94c CHANGELOG.md: Add note about multi-value separators 2021-01-26 15:20:22 +02:00
df670e81b9 README.md: Use badge from my Drone CI
All checks were successful
continuous-integration/drone/push Build is passing
I'm not using SourceHut anymore.
2021-01-26 14:38:50 +02:00
ae357d8c6c Revert "Update requirements"
This reverts commit ca80340f7a717a9c8cd1780ba12e5bd366c9900d.

Nope, we still need the --without-hashes because this still fails
on Python 3.7, but not 3.8 or 3.9. From looking around it seems
that nobody can agree whether poetry should handle this, pip should
handle it, or upstream projects should pin their dependencies.
2021-01-26 14:15:31 +02:00
ca80340f7a Update requirements
Some checks failed
continuous-integration/drone/push Build is failing
Generated with poetry export:

    $ poetry export -f requirements.txt > requirements.txt
    $ poetry export --dev -f requirements.txt > requirements-dev.txt

Trying to see if we no longer need --without-hashes since we don't
support Python 3.6 anymore.
2021-01-26 11:46:05 +02:00
cc1743b86d Remove .build.yml
I will just use GitHub Actions and Drone.
2021-01-26 11:41:30 +02:00
bcb9885c6b Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running on Python 3.6 in Travis:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-01-26 10:36:48 +02:00
b484b75178 poetry.lock: Run poetry update 2021-01-26 10:36:04 +02:00
d3880a9dfa Remove Python 3.6 support
All checks were successful
continuous-integration/drone/push Build is passing
Pandas 1.2.0 apparently requires Python 3.7.1+.
2021-01-03 15:51:53 +02:00
7edb8b19d7 tests/test_check.py: Reformat with black 2021-01-03 15:50:21 +02:00
a6709c7f82 Update requirements
Some checks failed
continuous-integration/drone/push Build is failing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running on Python 3.6 in Travis:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-01-03 15:42:00 +02:00
d489ea4609 poetry.lock: Run poetry update 2021-01-03 15:41:08 +02:00
96634cbb67 pytest.ini: Change --strict to --strict-markers
This is deprecated since pytest 6.2.0.

See: https://docs.pytest.org/en/stable/deprecations.html#the-strict-command-line-option
2021-01-03 15:40:14 +02:00
29e67a0887 Add tests for unnecessary multi-value separators 2021-01-03 15:37:18 +02:00
32cea2055f data/test.csv: Add unnecessary multi-value separator 2021-01-03 15:33:04 +02:00
0dc66c5c4e Expand check/fix for multi-value separators
I just came across some metadata that had unnecessary multi-value
separators at the end of a field, causing a blank value to be used.

For example: "Kenya||Tanzania||"
2021-01-03 15:30:03 +02:00
c26ad83534 .github: Test CLI invocation 2020-12-14 23:47:09 +02:00
72ca9d99bf setup.py: Add Python 3.9
[SKIP CI]
2020-12-14 23:44:35 +02:00
ae33a9b793 Add .drone.yml 2020-12-14 23:42:23 +02:00
fc0367bfc8 README.md: Update note about Python version 2020-12-08 10:52:24 +02:00
e33b285034 README.md: Add GitHub Actions badge 2020-12-08 10:48:31 +02:00
349fca03b8 .github/workflows/python-app.yml: Rename
This name is displayed in the badge so it should be something more
relevant.
2020-12-08 10:46:39 +02:00
52d8904870 Remove .travis.yml
They changed their free tier and I might as well use GitHub Actions
for ILRI stuff anyways.
2020-12-08 10:41:36 +02:00
971c69e535 Create python-app.yml
Try GitHub Actions for Python 3.8 using GitHub's Python example.
2020-12-08 10:38:52 +02:00
f8cc233e25 .travis.yml: Use Amazon Graviton2 ARM environment
These are the new hotness and should have faster build times.

See: https://blog.travis-ci.com/2020-09-11-arm-on-aws
2020-12-06 10:49:03 +02:00
aa7b7a9592 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running on Python 3.6 in Travis:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2020-11-03 07:42:45 +02:00
57b455bde7 poetry.lock: Run poetry update 2020-11-03 07:40:56 +02:00
23b95fa368 .travis.yml: Use Ubuntu 20.04 "Focal" environment 2020-10-29 00:14:54 +03:00
6985f76aa3 .travis.yml: Bump Python versions
Test Python 3.9 now that it was released, and allow tests to fail
on nightly builds.
2020-10-29 00:14:36 +03:00
98a6a19e12 Update requirements-dev.txt
Generated with poetry export:

    $ poetry export --dev -f requirements.txt > requirements-dev.txt
2020-10-06 17:48:46 +03:00
f4914c414f Only install ipython on Python 3.7+ 2020-10-06 17:48:16 +03:00
d352fe8017 Update requirements
Generated with poetry export:

    $ poetry export -f requirements.txt > requirements.txt
    $ poetry export --dev -f requirements.txt > requirements-dev.txt
2020-10-06 17:21:33 +03:00
f13c360084 Update poetry package dependencies 2020-10-06 17:20:16 +03:00
7cfd4c0b59 csv_metadata_quality: Move scoped imports to global
According to PEP8 we should avoid scoped imports unless you have a
good reason. Here there are two cases where we do (issn and isbn),
but I will move the others to the global scope.
2020-10-06 17:11:39 +03:00
826509ddcf poetry.lock: Run poetry update
List of updated modules:

  - Updating numpy (1.19.1 -> 1.19.2)
  - Updating pygments (2.6.1 -> 2.7.1)
  - Updating pandas (1.1.1 -> 1.1.2)

All tests still pass according to pytest.
2020-09-26 12:18:23 +03:00
22b5c0f7a1 CHANGELOG.md: Add note about dependencies update 2020-09-08 15:04:40 +03:00
774e274b32 poetry.lock: Run poetry update
Update dependencies to latest version:

  - Updating attrs (19.3.0 -> 20.2.0)
  - Updating more-itertools (8.4.0 -> 8.5.0)
  - Updating openpyxl (3.0.4 -> 3.0.5)
  - Updating parso (0.7.0 -> 0.7.1)
  - Updating sqlalchemy (1.3.18 -> 1.3.19)
  - Updating urllib3 (1.25.9 -> 1.25.10)
  - Updating agate-dbf (0.2.1 -> 0.2.2)
  - Updating agate-sql (0.5.4 -> 0.5.5)
  - Updating jedi (0.17.1 -> 0.17.2)
  - Updating numpy (1.19.0 -> 1.19.1)
  - Updating prompt-toolkit (3.0.5 -> 3.0.7)
  - Updating regex (2020.6.8 -> 2020.7.14)
  - Updating traitlets (4.3.3 -> 5.0.4)
  - Updating ipython (7.16.1 -> 7.18.1)
  - Updating pandas (1.0.5 -> 1.1.1)
  - Updating python-stdnum (1.13 -> 1.14)

All tests still pass according to pytest.
2020-09-08 15:04:00 +03:00
db474a802f README.md: Use badge from travis-ci.com 2020-08-04 11:12:28 +03:00
e241f8461b CHANGELOG.md: Add notes 2020-07-06 14:10:46 +03:00
431e6331c8 csv_metadata_quality/check.py: Format with black 2020-07-06 14:10:19 +03:00
cb07d357d4 Version 0.4.2 2020-07-06 14:04:34 +03:00
65cd48a26f CHANGELOG.md: Update changes 2020-07-06 14:00:21 +03:00
0f883f640c Remove pipenv 2020-07-06 13:59:49 +03:00
f4c5c5781e README.md: Switch to poetry 2020-07-06 13:59:11 +03:00
6aa784ad8c Update requirements
Generated with poetry export:

    $ poetry export -f requirements.txt > requirements.txt
    $ poetry export --dev -f requirements.txt > requirements-dev.txt
2020-07-06 13:57:07 +03:00
7b8da94f41 poetry.lock: Update Python dependencies 2020-07-06 13:56:31 +03:00
2a1566af62 csv_metadata_quality/check.py: Parameterize AGROVOC request 2020-07-06 13:44:46 +03:00
5fcaa63bd5 csv_metadata_quality/check.py: Prune requests cache once
We only need to prune the requests cache once before using it, not
for every value we check.
2020-07-06 13:42:19 +03:00
aa9e23b46c pyproject.toml: Update license specifier
We need to use valid SPDX license identifiers.
2020-06-09 14:22:53 +03:00
73acb1661f Update requirements
Generated with poetry export:

    $ poetry export -f requirements.txt > requirements.txt
    $ poetry export --dev -f requirements.txt > requirements-dev.txt
2020-05-31 17:51:16 +03:00
2a068fddc4 .build.yml: Fix test 2020-05-31 17:44:37 +03:00
c6c2f13e88 .build.yml: Fix poetry install invocation
Poetry apparently installs dev dependencies by default.
2020-05-31 17:37:09 +03:00
56f16e37ed .build.yml: Use poetry in SourceHut CI 2020-05-31 17:35:04 +03:00
0c44b967b6 Add poetry project file and lock
I want to try to use poetry instead of pipenv because pipenv takes
forever to do dependency resolution sometimes. Also, I have had a
few issues with Python modules like black that don't have releases
other than pre-releases, and even including the project itself in
the dependencies (pip install -e . ...?). My initial experience is
that poetry handles this better.
2020-05-31 17:33:40 +03:00
8a267bb40b .travis.yml: Try to build with Python 3.8-dev
But allow failures.
2020-03-29 16:40:11 +03:00
8fda8f1ef1 Pipfile.lock: Run pipenv update
All tests still passing.
2020-03-20 16:22:04 +02:00
5e471813e8 CHANGELOG.md: Add note about python dependencies 2020-01-29 12:41:43 +02:00
79244b9ac3 Pipfile.lock: Run pipenv update 2020-01-29 12:39:12 +02:00
5e81a33482 CHANGELOG.md: Add note about field names 2020-01-16 12:37:11 +02:00
28b5996aa6 Output field name for more fixes and checks
This helps identify which field has the error.
2020-01-16 12:35:11 +02:00
40ba9bae6c README.md: Adjust heading size 2020-01-15 12:26:11 +02:00
0b2d211455 Version 0.4.1 2020-01-15 12:19:42 +02:00
7f1df0b47c Support Python 3.6 and 3.7 again 2020-01-15 12:19:17 +02:00
365ecda324 Add utility function to check normalization
Python's built-in unicodedata library includes the is_normalized()
function starting with Python 3.8. This utility function allows us
to do the same thing with earlier Python versions.

See: https://docs.python.org/3/library/unicodedata.html
2020-01-15 12:17:52 +02:00
550ce7fb7e .travis.yml: Only test Python 3.8
The Unicode normalization feature requires Python 3.8 because the
unicodedata.is_normalized() function only appears there. If I find
another way to check if a string is normalized without normalizing
it first I will drop the requirements back down to Python 3.6.

See: https://docs.python.org/3/library/unicodedata.html
2020-01-15 11:57:21 +02:00
705127fd28 Version 0.4.0 2020-01-15 11:44:56 +02:00
894e0a196d setup.py: Change Python requirements
The `unicodedata.is_normalized()` function requires Python 3.8.

See: https://docs.python.org/3/library/unicodedata.html
2020-01-15 11:43:25 +02:00
87181bc7b8 Run black, isort, and flake8. 2020-01-15 11:41:31 +02:00
8de5d862b6 CHANGELOG.md: Add note about Unicode normalization 2020-01-15 11:40:40 +02:00
49e3543878 Add Unicode normalization
This will check all strings for un-normalized Unicode characters.
Normalization is done using NFC. This includes tests and updated
sample data (data/test.csv).

See: https://withblue.ink/2019/03/11/why-you-need-to-normalize-unicode-strings.html
2020-01-15 11:37:54 +02:00
403b253762 CHANGELOG.md: Update python library versions 2020-01-15 10:58:44 +02:00
c5fbaf407a Update python requirements
Generated using pipenv:

  $ pipenv lock -r > requirements.txt
  $ pipenv lock -r -d > requirements-dev.txt
2020-01-15 10:51:58 +02:00
4f81f6c83c Pipfile.lock: Run pipenv update 2020-01-15 10:51:19 +02:00
4b9d1e060f setup.py: Add Python 3.8 classifier 2019-12-14 12:56:11 +02:00
c8a71e3143 Pipfile.lock: Run pipenv update 2019-12-14 12:53:39 +02:00
7964d98ca5 Pipfile: Specify exact version of black
Black only releases pre-release versions, which causes issues with
pipenv. Instead of always running pipenv with "--pre" and potenti-
ally letting in some other pre-release versions for other depende-
ncies, I would rather specify the latest black version explicitly.

See: https://github.com/psf/black/issues/517
See: https://github.com/microsoft/vscode-python/issues/5171
2019-12-14 12:41:28 +02:00
64ffc2f1da .travis.yml: Install packages from requirements.txt too 2019-11-14 23:42:28 +02:00
7b1bc29a92 .travis.yml: Try using pip instead of pipenv
The Pipfile knows it was created with Python 3.8, yet we're running
with multiple Python versions on Travis. I'm curious if would work
better to use pip to install dependencies instead of pipenv in this
case.
2019-11-14 23:37:25 +02:00
f0110d8e74 CHANGELOG.md: Add note about requirements 2019-11-14 23:30:26 +02:00
86498deee8 Update python requirements
Generated using pipenv:

  $ pipenv lock -r > requirements.txt
  $ pipenv lock -r -d > requirements-dev.txt
2019-11-14 23:28:42 +02:00
251647a15f CHANGELOG.md: Add TravisCI changes 2019-11-14 23:24:08 +02:00
0bd28e22ec .travis.yml: Test Python 3.8 2019-11-14 23:22:37 +02:00
63fdce7d13 .travis.yml: Use Ubuntu 18.04 "Bionic" 2019-11-14 23:22:19 +02:00
f068c0e16a CHANGELOG.md: Use Python 3.8.0 for pipenv 2019-11-14 23:11:43 +02:00
79b8f62a85 Use Python 3.8 for pipenv
Python 3.8.0 entered Arch Linux core repositories now and all tests
pass with Python 3.8.0 so it's time...
2019-11-14 23:10:20 +02:00
6c1e132531 CHANGELOG.md: Add unreleased changes 2019-11-14 09:19:19 +02:00
c0f3c866bd Pipfile.lock: Run pipenv update
Updates the following dependencies:

- numpy 1.17.2→1.17.4
- pandas 0.25.1→0.25.3
- flake8 3.7.8→3.7.9
- pytest 5.1.3→5.2.2
- black 19.3b0→19.10b0
2019-11-14 09:17:31 +02:00
36d0474b95 CHANGELOG.md: Move unreleased changes to v0.3.1 2019-10-01 17:11:52 +03:00
efdc3a841a Version 0.3.1 2019-10-01 17:11:13 +03:00
fd2ba6845d CHANGELOG.md: Update unreleased notes 2019-10-01 17:10:23 +03:00
e55380b4d5 csv_metadata_quality/fix.py: Harmonize language in fix output
We should always say if we're removing or replacing something.
2019-10-01 17:09:49 +03:00
85ae16d9b7 CHANGELOG.md: Add note about non-breaking spaces 2019-10-01 16:56:37 +03:00
c42f8b4812 csv_metadata_quality/fix.py: Replace non-breaking spaces
We should be replacing non-breaking spaces (U+00A0) with normal sp-
aces instead of removing them.
2019-10-01 16:55:04 +03:00
1c75608d54 README.md: Update introduction text
We should mention that this is not DSpace specific. Rather, it is
much more realistically Dublin Core specific.
2019-09-26 14:19:13 +03:00
0b15a8ed3b README.md: Remove TODO about lack of space after comma
This was added as an automatic global fix a few weeks ago.
2019-09-26 14:16:33 +03:00
9ca266f5f0 data/test.csv: Change birthdate column to dc.date.issued
More accurately reflects actual data we will be validating.
2019-09-26 14:15:48 +03:00
0d3f948708 CHANGELOG.md: Update comment about language validation 2019-09-26 14:14:57 +03:00
c04207fcfc CHANGELOG.md: Fix header formatting 2019-09-26 14:13:50 +03:00
9d4eceddc7 .build.yml: Enable experimental CLI checks on SourceHut 2019-09-26 14:11:35 +03:00
e15c98cccb Move unreleased changes to v0.3.0 2019-09-26 14:06:31 +03:00
93c4e1a993 Update python requirements
Generated using pipenv:

  $ pipenv lock -r > requirements.txt
  $ pipenv lock -r -d > requirements-dev.txt
2019-09-26 14:05:37 +03:00
9963b2bb64 Pipfile.lock: Run pipenv update 2019-09-26 14:04:50 +03:00
76291c1876 CHANGELOG.md: Add note about language validation 2019-09-26 14:03:18 +03:00
604bd5bda6 Reformat tests with black 2019-09-26 14:02:51 +03:00
e7c220039b README.md: Add note about experimental language validation 2019-09-26 13:59:50 +03:00
d7b5e378bc setup.py: Add langid 2019-09-26 13:49:32 +03:00
8435ee242d Experimental language detection using langid
Works decenty well assuming the title, abstract, and citation fields
are an accurate representation of the language as identified by the
language field. Handles ISO 639-1 (alpha 2) and ISO 639-3 (alpha 3)
values seamlessly.

This includes updated pipenv environment, test data, pytest tests
for both correct and incorrect ISO 639-1 and ISO 639-3 languages,
and a new command line option "-e".
2019-09-26 13:46:32 +03:00
7ac1c6f554 README.md: Update comment about ISO 639-3
The pycountry library is actually using ISO 639-3 apparently.

See: https://pypi.org/project/pycountry/
2019-09-26 07:51:41 +03:00
86d4623fd3 More ISO 639-1 and ISO 639-3 fixes
ISO 639-1 uses two-letter codes and ISO 639-3 uses three-letter codes.
Technically there ISO 639-2/T and ISO 639-2/B, which also uses three
letter codes, but those are not supported by the pycountry library
so I won't even worry about them.

See: https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
2019-09-26 07:44:39 +03:00
ddbe970342 data/test.csv: Update titles of language tests
ISO 639-1 is alpha 2 and ISO 639-3 is alpha 3.

See: https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
2019-09-26 07:40:27 +03:00
31c78ca6f3 data/test.csv: Rename contributor column to title
This makes more sense as a description of each test and the titles
are obviously not authors.
2019-09-26 05:50:40 +03:00
154d05b5e2 CHANGELOG.md: Update notes 2019-09-24 18:55:05 +03:00
186f146edb Pipfile.lock: Run pipenv update
Synchronizes state with the Pipfile and brings some new deps.
2019-09-24 18:54:49 +03:00
a4cb301943 CHANGELOG.md: Add note about csvkit 2019-09-24 18:49:20 +03:00
219e37526d Pipfile: Add csvkit to dev requirements
Used to inspect CSV files during testing and development.
2019-09-24 18:48:01 +03:00
f304ca6a33 csv_metadata_quality/app.py: Use simpler column iteration
I don't know where I got the other one...
2019-09-21 17:19:39 +03:00
3d5c8bdf5d CHANGELOG.md: Add notes about updated python packages 2019-09-11 16:45:39 +03:00
480956d54d Pipfile.lock: Run pipenv update 2019-09-11 16:45:16 +03:00
d9fc09f121 Fix references to ISO 639
It turns out that ISO 639-1 is the two-letter codes, and ISO 639-2
is the three-letter codes, aka alpha2 and alpha3.

See: https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
2019-09-11 16:36:53 +03:00
b5899001b7 CHANGELOG.md: Add note about black and isort 2019-08-29 01:26:11 +03:00
c92977d1ca Update requirements-dev.txt
Generated with:

  $ pipenv lock -r -d > requirements-dev.txt
2019-08-29 01:25:14 +03:00
280a99c8a8 Sort imports with isort
See: https://sourcery.ai/blog/python-best-practices/
2019-08-29 01:15:04 +03:00
0388145b81 Add configuration for isort
See: https://sourcery.ai/blog/python-best-practices/
2019-08-29 01:14:31 +03:00
d97dcd19db Format with black 2019-08-29 01:10:39 +03:00
b375f0e895 Add black and isort to pipenv dev dependencies
These do a very opinionated automatic formatting and validation of
code.

See: https://sourcery.ai/blog/python-best-practices/
2019-08-29 01:08:38 +03:00
865c61d316 Add note about updated python dependencies 2019-08-28 21:02:21 +03:00
3b2ba57b75 Update python requirements
Generated using pipenv:

  $ pipenv lock -r > requirements.txt
  $ pipenv lock -r -d > requirements-dev.txt
2019-08-28 21:01:48 +03:00
2805c556a9 Pipfile.lock: Run pipenv update
Brings numpy 1.17.1, pandas 0.25.1, requests-cache 0.5.2, and pandas
0.25.1.
2019-08-28 20:58:35 +03:00
c354a3687c Release version 0.2.2 2019-08-28 00:10:17 +03:00
07f80cb37f tests/test_fix.py: Add test for missing space after comma 2019-08-28 00:08:56 +03:00
89d72540f1 data/test.csv: Add sample for missing space after comma 2019-08-28 00:08:26 +03:00
81190d56bb Add fix for missing space after commas
This happens in names very often, for example in the contributor
and citation fields. I will limit this to those fields for now and
hide this fix behind the "unsafe fixes" option until I test it more.
2019-08-28 00:05:52 +03:00
2af714fb05 README.md: Add a handful of TODOs 2019-08-27 00:12:41 +03:00
cc863a6bdd CHANGELOG.md: Add note about excluding fields 2019-08-27 00:11:22 +03:00
113e7cd8b6 csv_metadata_quality/app.py: Add ability to skip fields
The user may want to skip the checking and fixing of certain fields
in the input file.
2019-08-27 00:10:07 +03:00
bd984f3db5 README.md: Update TravisCI badge 2019-08-22 15:07:03 +03:00
3f4e84a638 README.md: Use ILRI GitHub remote 2019-08-22 14:54:12 +03:00
c52b3ed131 CHANGELOG.md: Add note about AGROVOC 2019-08-21 16:37:49 +03:00
884e8f970d csv_metadata_quality/check.py: Simplify AGROVOC check
I recycled this code from a separate agrovoc-lookup.py script that
checks lines in a text file to see if they are valid AGROVOC terms
or not. There I was concerned about skipping comments or something
I think, but we don't need to check that here. We simply check the
term that is in the field and inform the user if it's valid or not.
2019-08-21 16:35:29 +03:00
6d02f5026a CHANGELOG.md: Add note about date checks 2019-08-21 15:35:46 +03:00
e7cb8920db tests/test_check.py: Update date tests 2019-08-21 15:34:52 +03:00
ed5612fbcf Add column name to output in date checks
This makes it easier to understand where the error is in case a CSV
has multiple date fields, for example:

    Missing date (dc.date.issued).
    Missing date (dc.date.issued[]).

If you have 126 items and you get 126 "Missing date" messages then
it's likely that 100 of the items have dates in one field, and the
others have dates in other field.
2019-08-21 15:31:12 +03:00
3247495cee CHANGELOG.md: Remove extra space 2019-08-11 10:43:27 +03:00
7255bf4707 Version 0.2.1 2019-08-11 10:39:39 +03:00
3aaf18c290 CHANGELOG.md: Move unreleased changes to 0.2.1 2019-08-11 10:39:18 +03:00
745306edd7 CHANGELOG.md: Add note about replacement of unnccesary Unicode 2019-08-11 00:09:35 +03:00
e324e321a2 data/test.csv: Add test for replacement of unneccessary Unicode 2019-08-11 00:08:44 +03:00
232ff99898 csv_metadata_quality/fix.py: Add more unneccessary Unicode fixes
Add a check for soft hyphens (U+00AD). In one sample CSV I have a
normal hyphen followed by a soft hyphen in an ISBN. This causes the
ISBN validation to fail.
2019-08-11 00:07:21 +03:00
13d5221378 csv_metadata_quality/check.py: Fix test for False 2019-08-10 23:52:53 +03:00
3c7a9eb75b CHANGELOG.md: Add check for uncommon filename extensions 2019-08-10 23:47:46 +03:00
a99fbd8a51 data/test.csv: Add test case for uncommon filename extension 2019-08-10 23:46:56 +03:00
e801042340 tests/test_check.py: Fix unused result
We don't need to capture the function's return value here because
pytest will capture stdout from the function.
2019-08-10 23:45:41 +03:00
62ef2a4489 tests/test_check.py: Add tests for file extensions 2019-08-10 23:44:13 +03:00
9ce7dc6716 Add check for uncommon filenames
Generally we want people to upload documents in accessible formats
like PDF, Word, Excel, and PowerPoint. This check warns if a file
is using an uncommon extension.
2019-08-10 23:41:16 +03:00
5ff584a8d7 Version 0.2.0 2019-08-09 01:39:51 +03:00
4cf7bc182b Update requirements-dev.txt
Generated with:

  $ pipenv lock -r -d > requirements-dev.txt
2019-08-09 01:34:54 +03:00
7d3f5aae66 CHANGELOG.md: Add pytest-clarity 2019-08-09 01:33:34 +03:00
c77c065e25 Update Pipfile.lock 2019-08-09 01:32:53 +03:00
8fb40d96b1 Pipfile: Add pytest-clarity to dev packages
This helps you understand the cryptic assertion error output from
pytest. For some reason pytest-clarity is a pre-release package so
we need to install it in pipenv with --pre.
2019-08-09 01:30:37 +03:00
5f2e3ff4bd CHANGELOG.md: Add improved suspicious character check 2019-08-09 01:28:07 +03:00
d93c2aae13 tests/test_check.py: Update suspicious character check
The suspicious character check was updated to include the name of
the field where the metadata value with the  suspicious character
exists.
2019-08-09 01:26:38 +03:00
62fea95087 Improve suspicious character detection
Now it will print just the part of the metadata value that contains
the suspicious character (up to 80 characters, so we don't make the
line break on terminals that use 80 character width by default).

Also, print the name of the field in which the metadata value is so
that it is easier for the user to locate.
2019-08-09 01:25:40 +03:00
8772bdec51 csv_metadata_quality/app.py: Explicitly exit with success 2019-08-04 09:10:37 +03:00
6d4ecd75aa csv_metadata_quality/app.py: Close files before exit 2019-08-04 09:10:19 +03:00
264ce1d1df CHANGELOG.md: Add new item for Ctrl-C handling 2019-08-03 22:18:44 +03:00
f4e7fd73f5 csv_metadata_quality/app.py: Handle Ctrl-C
Instead of printing an ugly two-page stack trace.
2019-08-03 21:11:57 +03:00
a00d3d7ea5 README.md: Simplify installation instructions
Pipenv has captured the local dependency with `-e .` so now it gets
installed by the Pipfile or requirements.txt.
2019-08-02 11:02:50 +03:00
f772a3be41 Update python requirements
Generated using pipenv:

  $ pipenv lock -r > requirements.txt
2019-08-02 11:02:25 +03:00
d1b3e9e375 pipenv install -e . 2019-08-02 10:58:21 +03:00
27 changed files with 3367 additions and 783 deletions

View File

@ -1,19 +0,0 @@
image: archlinux
packages:
- python-pipenv
sources:
- https://git.sr.ht/~alanorth/csv-metadata-quality
tasks:
- setup: |
cd csv-metadata-quality
pipenv install --dev
- pytest: |
cd csv-metadata-quality
pipenv run pytest
- testcli: |
cd csv-metadata-quality
pipenv run pip install .
pipenv run csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u --agrovoc-fields dc.subject,cg.coverage.country
environment:
PIPENV_NOSPIN: 'True'
PIPENV_HIDE_EMOJIS: 'True'

91
.drone.yml Normal file
View File

@ -0,0 +1,91 @@
---
kind: pipeline
type: docker
name: python310
steps:
- name: test
image: python:3.10-slim
commands:
- id
- python -V
- apt update && apt install -y gcc g++ libicu-dev pkg-config
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
# Basic test
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Basic test with unsafe fixes
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Geography test
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv
# Geography test with unsafe fixes
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv -u
# Test with experimental checks
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d
---
kind: pipeline
type: docker
name: python39
steps:
- name: test
image: python:3.9-slim
commands:
- id
- python -V
- apt update && apt install -y gcc g++ libicu-dev pkg-config
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
# Basic test
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Basic test with unsafe fixes
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Geography test
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv
# Geography test with unsafe fixes
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv -u
# Test with experimental checks
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d
---
kind: pipeline
type: docker
name: python38
steps:
- name: test
image: python:3.8-slim
commands:
- id
- python -V
- apt update && apt install -y gcc g++ libicu-dev pkg-config
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
# Basic test
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Basic test with unsafe fixes
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Geography test
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv
# Geography test with unsafe fixes
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv -u
# Test with experimental checks
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d
# vim: ts=2 sw=2 et

50
.github/workflows/python-app.yml vendored Normal file
View File

@ -0,0 +1,50 @@
# This workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Build and Test
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.10
uses: actions/setup-python@v2
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install flake8 pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
if [ -f requirements-dev.txt ]; then pip install -r requirements-dev.txt; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
- name: Test with pytest
run: |
pytest
- name: Test CLI
run: |
python setup.py install
# Basic test
csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Test with unsafe fixes
csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Test with experimental checks
csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d

View File

@ -1,11 +0,0 @@
dist: xenial
language: python
python:
- "3.6"
- "3.7"
install:
- "pip install pipenv --upgrade-strategy=only-if-needed"
- "pipenv install --dev"
script: pytest
# vim: ts=2 sw=2 et

View File

@ -4,7 +4,173 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
## [0.6.0] = 2022-09-02
### Changed
- Perform fix for "unnecessary" Unicode characters after we try to fix encoding
issues with ftfy
- ftfy heuristics to use `is_bad()` instead of `sequence_weirdness()`
- ftfy `fix_text()` to *not* change “smart quotes” to "ASCII quotes"
### Updated
- Python dependencies
- Metadatata field exclude logic
### Added
- Ability to drop invalid AGROVOC values with `-d` when checking AGROVOC values
with `-a <field.name>`
- Ability to add missing UN M.49 regions when both country and region columns
are present. Enable with `-u` (unsafe fixes) for now.
### Removed
- Support for reading Excel files (both `.xls` and `.xlsx`) as it was completely
untested
## [0.5.0] - 2021-12-08
### Added
- Ability to check for, and fix, "mojibake" characters using [ftfy](https://github.com/LuminosoInsight/python-ftfy)
- Ability to check if the item's title exists in the citation
- Ability to check if an item has countries, but no matching regions (only
suggests missing regions if there is a region field in the CSV)
### Updated
- Python dependencies
### Fixed
- Regular expression to match all citation fields (dc.identifier.citation as
well as dcterms.bibliographicCitation) in `experimental.correct_language()`
- Regular expression to match dc.title and dcterms.title, but
ignore dc.title.alternative `check.duplicate_items()`
- Missing field name in `fix.newlines()` output
## [0.4.7] - 2021-03-17
### Changed
- Fixing invalid multi-value separators like `|` and `|||` is no longer class-
ified as "unsafe" as I have yet to see a case where this was intentional
- Not user visible, but now checks only print a warning to the screen instead
of returning a value and re-writing the DataFrame, which should be faster and
use less memory
### Added
- Configurable directory for AGROVOC requests cache (to allow running the web
version from Google App Engine where we can only write to /tmp)
- Ability to check for duplicate items in the data set (uses a combination of
the title, type, and date issued to determine uniqueness)
### Removed
- Checks for invalid and unnecessary multi-value separators because now I fix
them whenever I see them, so there is no need to have checks for them
### Updated
- Run `poetry update` to update project dependencies
## [0.4.6] - 2021-03-11
### Added
- Validation of dcterms.license field against SPDX license identifiers
### Changed
- Use DCTERMS fields where possible in `data/test.csv`
### Updated
- Run `poetry update` to update project dependencies
### Fixed
- Output for all fixes should be green, because it is good
## [0.4.5] - 2021-03-04
### Added
- Check dates in dcterms.issued field as well, not just fields that have the
word "date" in them
### Updated
- Run `poetry update` to update project dependencies
## [0.4.4] - 2021-02-21
### Added
- Accept dates formatted in ISO 8601 extended with combined date and time, for
example: 2020-08-31T11:04:56Z
- Colorized output: red for errors, yellow for warnings and information, green
for changes
### Updated
- Run `poetry update` to update project dependencies
## [0.4.3] - 2021-01-26
### Changed
- Reformat with black
- Requires Python 3.7+ for pandas 1.2.0
### Updated
- Run `poetry update`
- Expand check/fix for multi-value separators to include metadata with invalid
separators at the end, for example "Kenya||Tanzania||"
## [0.4.2] - 2020-07-06
### Changed
- Add field name to the output for more fixes and checks to help identify where
the error is
- Minor optimizations to AGROVOC subject lookup
- Use Poetry instead of Pipenv
### Updated
- Update python dependencies to latest versions
## [0.4.1] - 2020-01-15
### Changed
- Reduce minimum Python version to 3.6 by working around the `is_normalized()`
that only works in Python >= 3.8
## [0.4.0] - 2020-01-15
### Added
- Unicode normalization (enable with `--unsafe-fixes`, see README.md)
### Updated
- Update python dependencies to latest versions, including numpy 1.18.1, pandas
1.0.0rc0, flake8 3.7.9, pytest 5.3.2, and black 19.10b0
- Regenerate requirements.txt and requirements-dev.txt
### Changed
- Use Python 3.8.0 for pipenv
- Use Ubuntu 18.04 "Bionic" for TravisCI builds
- Test Python 3.8 in TravisCI builds
## [0.3.1] - 2019-10-01
## Changed
- Replace non-breaking spaces (U+00A0) with space instead of removing them
- Harmonize language of script output when fixing various issues
## [0.3.0] - 2019-09-26
### Updated
- Update python dependencies to latest versions, including numpy 1.17.2, pandas
0.25.1, pytest 5.1.3, and requests-cache 0.5.2
### Added
- csvkit to dev requirements (csvcut etc are useful during development)
- Experimental language validation using the Python `langid` library (enable with `-e`, see README.md)
### Changed
- Re-formatted code with black and isort
## [0.2.2] - 2019-08-27
### Changed
- Output of date checks to include column names (helps debugging in case there are multiple date fields)
### Added
- Ability to exclude certain fields using `--exclude-fields`
- Fix for missing space after a comma, ie "Orth,Alan S."
### Improved
- AGROVOC lookup code
## [0.2.1] - 2019-08-11
### Added
- Check for uncommon filename extensions
- Replacement of unneccessary Unicode characters like soft hyphens (U+00AD)
## [0.2.0] - 2019-08-09
### Added
- Handle Ctrl-C interrupt gracefully
- Make output in suspicious character check more user friendly
- Add pytest-clarity to dev packages for more user friendly pytest output
## [0.1.0] - 2019-08-01
### Changed

19
CITATION.cff Normal file
View File

@ -0,0 +1,19 @@
cff-version: "1.1.0"
abstract: "A simple but opinionated metadata quality checker and fixer designed to work with CSVs in the DSpace ecosystem."
authors:
-
affiliation: "International Livestock Research Institute"
family-names: Orth
given-names: "Alan S."
orcid: "https://orcid.org/0000-0002-1735-7458"
date-released: 2019-07-26
doi: "10568/110997"
keywords:
- dspace
- "dublin-core"
- csv
- metadata
license: "GPL-3.0-only"
message: "If you use this software, please cite it using these metadata."
repository-code: "https://github.com/ilri/csv-metadata-quality"
title: "DSpace CSV Metadata Quality Checker"

20
Pipfile
View File

@ -1,20 +0,0 @@
[[source]]
name = "pypi"
url = "https://pypi.org/simple"
verify_ssl = true
[dev-packages]
pytest = "*"
ipython = "*"
flake8 = "*"
[packages]
pandas = "*"
python-stdnum = "*"
xlrd = "*"
requests = "*"
requests-cache = "*"
pycountry = "*"
[requires]
python_version = "3.7"

359
Pipfile.lock generated
View File

@ -1,359 +0,0 @@
{
"_meta": {
"hash": {
"sha256": "1c4130ed98fb55545244ba2926f2b4246dc86af7545cb892a45311426f934cae"
},
"pipfile-spec": 6,
"requires": {
"python_version": "3.7"
},
"sources": [
{
"name": "pypi",
"url": "https://pypi.org/simple",
"verify_ssl": true
}
]
},
"default": {
"certifi": {
"hashes": [
"sha256:046832c04d4e752f37383b628bc601a7ea7211496b4638f6514d0e5b9acc4939",
"sha256:945e3ba63a0b9f577b1395204e13c3a231f9bc0223888be653286534e5873695"
],
"version": "==2019.6.16"
},
"chardet": {
"hashes": [
"sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae",
"sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691"
],
"version": "==3.0.4"
},
"idna": {
"hashes": [
"sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407",
"sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c"
],
"version": "==2.8"
},
"numpy": {
"hashes": [
"sha256:03e311b0a4c9f5755da7d52161280c6a78406c7be5c5cc7facfbcebb641efb7e",
"sha256:0cdd229a53d2720d21175012ab0599665f8c9588b3b8ffa6095dd7b90f0691dd",
"sha256:312bb18e95218bedc3563f26fcc9c1c6bfaaf9d453d15942c0839acdd7e4c473",
"sha256:464b1c48baf49e8505b1bb754c47a013d2c305c5b14269b5c85ea0625b6a988a",
"sha256:5adfde7bd3ee4864536e230bcab1c673f866736698724d5d28c11a4d63672658",
"sha256:7724e9e31ee72389d522b88c0d4201f24edc34277999701ccd4a5392e7d8af61",
"sha256:8d36f7c53ae741e23f54793ffefb2912340b800476eb0a831c6eb602e204c5c4",
"sha256:910d2272403c2ea8a52d9159827dc9f7c27fb4b263749dca884e2e4a8af3b302",
"sha256:951fefe2fb73f84c620bec4e001e80a80ddaa1b84dce244ded7f1e0cbe0ed34a",
"sha256:9588c6b4157f493edeb9378788dcd02cb9e6a6aeaa518b511a1c79d06cbd8094",
"sha256:9ce8300950f2f1d29d0e49c28ebfff0d2f1e2a7444830fbb0b913c7c08f31511",
"sha256:be39cca66cc6806652da97103605c7b65ee4442c638f04ff064a7efd9a81d50a",
"sha256:c3ab2d835b95ccb59d11dfcd56eb0480daea57cdf95d686d22eff35584bc4554",
"sha256:eb0fc4a492cb896346c9e2c7a22eae3e766d407df3eb20f4ce027f23f76e4c54",
"sha256:ec0c56eae6cee6299f41e780a0280318a93db519bbb2906103c43f3e2be1206c",
"sha256:f4e4612de60a4f1c4d06c8c2857cdcb2b8b5289189a12053f37d3f41f06c60d0"
],
"version": "==1.17.0"
},
"pandas": {
"hashes": [
"sha256:074a032f99bb55d178b93bd98999c971542f19317829af08c99504febd9e9b8b",
"sha256:20f1728182b49575c2f6f681b3e2af5fac9e84abdf29488e76d569a7969b362e",
"sha256:2745ba6e16c34d13d765c3657bb64fa20a0e2daf503e6216a36ed61770066179",
"sha256:32c44e5b628c48ba17703f734d59f369d4cdcb4239ef26047d6c8a8bfda29a6b",
"sha256:3b9f7dcee6744d9dcdd53bce19b91d20b4311bf904303fa00ef58e7df398e901",
"sha256:544f2033250980fb6f069ce4a960e5f64d99b8165d01dc39afd0b244eeeef7d7",
"sha256:58f9ef68975b9f00ba96755d5702afdf039dea9acef6a0cfd8ddcde32918a79c",
"sha256:9023972a92073a495eba1380824b197ad1737550fe1c4ef8322e65fe58662888",
"sha256:914341ad2d5b1ea522798efa4016430b66107d05781dbfe7cf05eba8f37df995",
"sha256:9d151bfb0e751e2c987f931c57792871c8d7ff292bcdfcaa7233012c367940ee",
"sha256:b932b127da810fef57d427260dde1ad54542c136c44b227a1e367551bb1a684b",
"sha256:cfb862aa37f4dd5be0730731fdb8185ac935aba8b51bf3bd035658111c9ee1c9",
"sha256:de7ecb4b120e98b91e8a2a21f186571266a8d1faa31d92421e979c7ca67d8e5c",
"sha256:df7e1933a0b83920769611c5d6b9a1bf301e3fa6a544641c6678c67621fe9843"
],
"index": "pypi",
"version": "==0.25.0"
},
"pycountry": {
"hashes": [
"sha256:68e58bfd3bedeea49ba9d4b38f2bd5e042f9753628eba9a819fb03f551d89096"
],
"index": "pypi",
"version": "==19.7.15"
},
"python-dateutil": {
"hashes": [
"sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb",
"sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e"
],
"version": "==2.8.0"
},
"python-stdnum": {
"hashes": [
"sha256:d5f0af1bee9ddd9a20b398b46ce062dbd4d41fcc9646940f2667256a44df3854",
"sha256:f445ec32bf5246c90389204cabba465f494545371c29a83fa2d30e6c872a6763"
],
"index": "pypi",
"version": "==1.11"
},
"pytz": {
"hashes": [
"sha256:303879e36b721603cc54604edcac9d20401bdbe31e1e4fdee5b9f98d5d31dfda",
"sha256:d747dd3d23d77ef44c6a3526e274af6efeb0a6f1afd5a69ba4d5be4098c8e141"
],
"version": "==2019.1"
},
"requests": {
"hashes": [
"sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4",
"sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31"
],
"index": "pypi",
"version": "==2.22.0"
},
"requests-cache": {
"hashes": [
"sha256:6822f788c5ee248995c4bfbd725de2002ad710182ba26a666e85b64981866060",
"sha256:73a7211870f7d67af5fd81cad2f67cfe1cd3eb4ee6a85155e07613968cc72dfc"
],
"index": "pypi",
"version": "==0.5.0"
},
"six": {
"hashes": [
"sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c",
"sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73"
],
"version": "==1.12.0"
},
"urllib3": {
"hashes": [
"sha256:b246607a25ac80bedac05c6f282e3cdaf3afb65420fd024ac94435cabe6e18d1",
"sha256:dbe59173209418ae49d485b87d1681aefa36252ee85884c31346debd19463232"
],
"version": "==1.25.3"
},
"xlrd": {
"hashes": [
"sha256:546eb36cee8db40c3eaa46c351e67ffee6eeb5fa2650b71bc4c758a29a1b29b2",
"sha256:e551fb498759fa3a5384a94ccd4c3c02eb7c00ea424426e212ac0c57be9dfbde"
],
"index": "pypi",
"version": "==1.2.0"
}
},
"develop": {
"atomicwrites": {
"hashes": [
"sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4",
"sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6"
],
"version": "==1.3.0"
},
"attrs": {
"hashes": [
"sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79",
"sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399"
],
"version": "==19.1.0"
},
"backcall": {
"hashes": [
"sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4",
"sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2"
],
"version": "==0.1.0"
},
"decorator": {
"hashes": [
"sha256:86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de",
"sha256:f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6"
],
"version": "==4.4.0"
},
"entrypoints": {
"hashes": [
"sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19",
"sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451"
],
"version": "==0.3"
},
"flake8": {
"hashes": [
"sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548",
"sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696"
],
"index": "pypi",
"version": "==3.7.8"
},
"importlib-metadata": {
"hashes": [
"sha256:23d3d873e008a513952355379d93cbcab874c58f4f034ff657c7a87422fa64e8",
"sha256:80d2de76188eabfbfcf27e6a37342c2827801e59c4cc14b0371c56fed43820e3"
],
"version": "==0.19"
},
"ipython": {
"hashes": [
"sha256:1d3a1692921e932751bc1a1f7bb96dc38671eeefdc66ed33ee4cbc57e92a410e",
"sha256:537cd0176ff6abd06ef3e23f2d0c4c2c8a4d9277b7451544c6cbf56d1c79a83d"
],
"index": "pypi",
"version": "==7.7.0"
},
"ipython-genutils": {
"hashes": [
"sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8",
"sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"
],
"version": "==0.2.0"
},
"jedi": {
"hashes": [
"sha256:53c850f1a7d3cfcd306cc513e2450a54bdf5cacd7604b74e42dd1f0758eaaf36",
"sha256:e07457174ef7cb2342ff94fa56484fe41cec7ef69b0059f01d3f812379cb6f7c"
],
"version": "==0.14.1"
},
"mccabe": {
"hashes": [
"sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42",
"sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f"
],
"version": "==0.6.1"
},
"more-itertools": {
"hashes": [
"sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832",
"sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4"
],
"version": "==7.2.0"
},
"packaging": {
"hashes": [
"sha256:a7ac867b97fdc07ee80a8058fe4435ccd274ecc3b0ed61d852d7d53055528cf9",
"sha256:c491ca87294da7cc01902edbe30a5bc6c4c28172b5138ab4e4aa1b9d7bfaeafe"
],
"version": "==19.1"
},
"parso": {
"hashes": [
"sha256:63854233e1fadb5da97f2744b6b24346d2750b85965e7e399bec1620232797dc",
"sha256:666b0ee4a7a1220f65d367617f2cd3ffddff3e205f3f16a0284df30e774c2a9c"
],
"version": "==0.5.1"
},
"pexpect": {
"hashes": [
"sha256:2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1",
"sha256:9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb"
],
"markers": "sys_platform != 'win32'",
"version": "==4.7.0"
},
"pickleshare": {
"hashes": [
"sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca",
"sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"
],
"version": "==0.7.5"
},
"pluggy": {
"hashes": [
"sha256:0825a152ac059776623854c1543d65a4ad408eb3d33ee114dff91e57ec6ae6fc",
"sha256:b9817417e95936bf75d85d3f8767f7df6cdde751fc40aed3bb3074cbcb77757c"
],
"version": "==0.12.0"
},
"prompt-toolkit": {
"hashes": [
"sha256:11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780",
"sha256:2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1",
"sha256:977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55"
],
"version": "==2.0.9"
},
"ptyprocess": {
"hashes": [
"sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0",
"sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f"
],
"version": "==0.6.0"
},
"py": {
"hashes": [
"sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa",
"sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53"
],
"version": "==1.8.0"
},
"pycodestyle": {
"hashes": [
"sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56",
"sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c"
],
"version": "==2.5.0"
},
"pyflakes": {
"hashes": [
"sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0",
"sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2"
],
"version": "==2.1.1"
},
"pygments": {
"hashes": [
"sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127",
"sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297"
],
"version": "==2.4.2"
},
"pyparsing": {
"hashes": [
"sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80",
"sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4"
],
"version": "==2.4.2"
},
"pytest": {
"hashes": [
"sha256:6ef6d06de77ce2961156013e9dff62f1b2688aa04d0dc244299fe7d67e09370d",
"sha256:a736fed91c12681a7b34617c8fcefe39ea04599ca72c608751c31d89579a3f77"
],
"index": "pypi",
"version": "==5.0.1"
},
"six": {
"hashes": [
"sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c",
"sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73"
],
"version": "==1.12.0"
},
"traitlets": {
"hashes": [
"sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835",
"sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9"
],
"version": "==4.3.2"
},
"wcwidth": {
"hashes": [
"sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e",
"sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c"
],
"version": "==0.1.7"
},
"zipp": {
"hashes": [
"sha256:4970c3758f4e89a7857a973b1e2a5d75bcdc47794442f2e2dd4fe8e0466e809a",
"sha256:8a5712cfd3bb4248015eb3b0b3c54a5f6ee3f2425963ef2a0125b8bc40aafaec"
],
"version": "==0.5.2"
}
}
}

View File

@ -1,40 +1,55 @@
# CSV Metadata Quality [![Build Status](https://travis-ci.org/alanorth/csv-metadata-quality.svg?branch=master)](https://travis-ci.org/alanorth/csv-metadata-quality) [![builds.sr.ht status](https://builds.sr.ht/~alanorth/csv-metadata-quality.svg)](https://builds.sr.ht/~alanorth/csv-metadata-quality?)
A simple, but opinionated metadata quality checker and fixer designed to work with CSVs in the DSpace ecosystem. The implementation is essentially a pipeline of checks and fixes that begins with splitting multi-value fields on the standard DSpace "||" separator, trimming leading/trailing whitespace, and then proceeding to more specialized cases like ISSNs, ISBNs, languages, etc.
<h1 align="center">DSpace CSV Metadata Quality Checker</h1>
Requires Python 3.6 or greater. CSV and Excel support comes from the [Pandas](https://pandas.pydata.org/) library, though your mileage may vary with Excel because this is much less tested.
<p align="center">
<a href="https://ci.mjanja.ch/alanorth/csv-metadata-quality"><img alt="Build Status" src="https://ci.mjanja.ch/api/badges/alanorth/csv-metadata-quality/status.svg"></a>
<a href="https://github.com/ilri/csv-metadata-quality/actions"><img alt="Build and Test" src="https://github.com/ilri/csv-metadata-quality/workflows/Build%20and%20Test/badge.svg"></a>
<a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
</p>
A simple, but opinionated metadata quality checker and fixer designed to work with CSVs in the DSpace ecosystem (though it could theoretically work on any CSV that uses Dublin Core fields as columns). The implementation is essentially a pipeline of checks and fixes that begins with splitting multi-value fields on the standard DSpace "||" separator, trimming leading/trailing whitespace, and then proceeding to more specialized cases like ISSNs, ISBNs, languages, unnecessary Unicode, AGROVOC terms, etc.
Requires Python 3.8 or greater. CSV support comes from the [Pandas](https://pandas.pydata.org/) library.
If you use the DSpace CSV metadata quality checker please cite:
*Orth, A. 2019. DSpace CSV metadata quality checker. Nairobi, Kenya: ILRI. https://hdl.handle.net/10568/110997.*
## Functionality
- Validate dates, ISSNs, ISBNs, and multi-value separators ("||")
- Validate languages against ISO 639-2 and ISO 639-3
- Validate languages against ISO 639-1 (alpha2) and ISO 639-3 (alpha3)
- Experimental validation of titles and abstracts against item's Dublin Core language field
- Validate subjects against the AGROVOC REST API (see the `--agrovoc-fields` option)
- Validation of licenses against the list of [SPDX license identifiers](https://spdx.org/licenses)
- Fix leading, trailing, and excessive (ie, more than one) whitespace
- Fix invalid multi-value separators (`|`) using `--unsafe-fixes`
- Fix invalid and unnecessary multi-value separators (`|`)
- Fix problematic newlines (line feeds) using `--unsafe-fixes`
- Perform [Unicode normalization](https://withblue.ink/2019/03/11/why-you-need-to-normalize-unicode-strings.html) on strings using `--unsafe-fixes`
- Remove unnecessary Unicode like [non-breaking spaces](https://en.wikipedia.org/wiki/Non-breaking_space), [replacement characters](https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character), etc
- Check for "suspicious" characters that indicate encoding or copy/paste issues, for example "foreˆt" should be "forêt"
- Check for "mojibake" characters (and attempt to fix with `--unsafe-fixes`)
- Check for countries with missing regions (and attempt to fix with `--unsafe-fixes`)
- Remove duplicate metadata values
- Check for duplicate items, using the title, type, and date issued as an indicator
## Installation
The easiest way to install CSV Metadata Quality is with [pipenv](https://github.com/pypa/pipenv):
The easiest way to install CSV Metadata Quality is with [poetry](https://python-poetry.org):
```
$ git clone https://git.sr.ht/~alanorth/csv-metadata-quality
$ git clone https://github.com/ilri/csv-metadata-quality.git
$ cd csv-metadata-quality
$ pipenv install
$ pipenv shell
$ pip install .
$ poetry install
$ poetry shell
```
Otherwise, if you don't have pipenv, you can use a vanilla Python virtual environment:
Otherwise, if you don't have poetry, you can use a vanilla Python virtual environment:
```
$ git clone https://git.sr.ht/~alanorth/csv-metadata-quality
$ git clone https://github.com/ilri/csv-metadata-quality.git
$ cd csv-metadata-quality
$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt
$ pip install .
```
## Usage
@ -50,15 +65,36 @@ To validate and clean a CSV file you must specify input and output files using t
$ csv-metadata-quality -i data/test.csv -o /tmp/test.csv
```
## Unsafe Fixes
You can enable several "unsafe" fixes with the `--unsafe-fixes` option. Currently this will attempt to fix invalid multi-value separators and remove newlines.
## Invalid Multi-Value Separators
While it is *theoretically* possible for a single `|` character to be used legitimately in a metadata value, in my experience it is always a typo. For example, if a user mistakenly writes `Kenya|Tanzania` when attempting to indicate two countries, the result will be one metadata value with the literal text `Kenya|Tanzania`. This utility will correct the invalid multi-value separator so that there are two metadata values, ie `Kenya||Tanzania`.
### Invalid Multi-Value Separators
This is considered "unsafe" because it is *theoretically* possible for a single `|` character to be used legitimately in a metadata value, though in my experience it is always a typo. For example, if a user mistakenly writes `Kenya|Tanzania` when attempting to indicate two countries, the result will be one metadata value with the literal text `Kenya|Tanzania`. The `--unsafe-fixes` option will correct the invalid multi-value separator so that there are two metadata values, ie `Kenya||Tanzania`.
This will also remove unnecessary trailing multi-value separators, for example `Kenya||Tanzania||`.
## Unsafe Fixes
You can enable several "unsafe" fixes with the `--unsafe-fixes` option. Currently this will remove newlines, perform Unicode normalization, attempt to fix "mojibake" characters, and add missing UN M.49 regions.
### Newlines
This is considered "unsafe" because some systems give special importance to vertical space and render it properly. DSpace does not support rendering newlines in its XMLUI and has, at times, suffered from parsing errors that cause the import process to fail if an input file had newlines. The `--unsafe-fixes` option strips Unix line feeds (U+000A).
### Unicode Normalization
[Unicode](https://en.wikipedia.org/wiki/Unicode) is a standard for encoding text. As the standard aims to support most of the world's languages, characters can often be represented in different ways and still be valid Unicode. This leads to interesting problems that can be confusing unless you know what's going on behind the scenes. For example, the characters `é` and `é` *look* the same, but are nottechnically they refer to different code points in the Unicode standard:
- `é` is the Unicode code point `U+00E9`
- `é` is the Unicode code points `U+0065` + `U+0301`
Read more about [Unicode normalization](https://withblue.ink/2019/03/11/why-you-need-to-normalize-unicode-strings.html).
### Encoding Issues aka "Mojibake"
[Mojibake](https://en.wikipedia.org/wiki/Mojibake) is a phenomenon that occurs when text is decoded using an unintended character encoding. This usually presents itself in the form of strange, garbled characters in the text. Enabling "unsafe" fixes will attempt to correct these, for example:
- CIAT PublicaçaoCIAT Publicaçao
- CIAT PublicaciónCIAT Publicación
Pay special attention to the output of the script as well as the resulting file to make sure no new issues have been introduced. The ideal way to solve these issues is to avoid it in the first place. See [this guide about opening CSVs in UTF-8 format in Excel](https://www.itg.ias.edu/content/how-import-csv-file-uses-utf-8-character-encoding-0).
### Countries With Missing Regions
When an input file has both country and region columns we can check to see if the ISO 3166 country names have matching UN M.49 regions and add them when they are missing.
## AGROVOC Validation
You can enable validation of metadata values in certain fields against the AGROVOC REST API with the `--agrovoc-fields` option. For example, in addition to agricultural subjects, many countries and regions are also present AGROVOC. Enable this validation by specifying a comma-separated list of fields:
@ -71,11 +107,37 @@ Invalid AGROVOC (cg.coverage.country): KENYAA
*Note: Requests to the AGROVOC REST API are cached using [requests_cache](https://pypi.org/project/requests-cache/) to speed up subsequent runs with the same data and to be kind to the system's administrators.*
## Experimental Checks
You can enable experimental support for validating whether the value of an item's `dc.language.iso` or `dcterms.language` field matches the actual language used in its title, abstract, and citation.
```
$ csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
...
Possibly incorrect language es (detected en): Incorrect ISO 639-1 language
Possibly incorrect language spa (detected eng): Incorrect ISO 639-3 language
```
This currently uses the [Python langid](https://github.com/saffsd/langid.py) library. In the future I would like to move to the fastText library, but there is currently an [issue with their Python bindings](https://github.com/facebookresearch/fastText/issues/909) that makes this unfeasible.
## Todo
- Reporting / summary
- Better logging, for example with INFO, WARN, and ERR levels
- Verbose, debug, or quiet options
- Warn if an author is shorter than 3 characters?
- Validate DOIs? Normalize to https://doi.org format? Or use just the DOI part: 10.1016/j.worlddev.2010.06.006
- Warn if two items use the same file in `filename` column
- Add an option to drop invalid AGROVOC subjects?
- Add tests for application invocation, ie `tests/test_app.py`?
- Validate ISSNs or journal titles against CrossRef API?
- Add configurable field validation, like specify a field name and a validation file?
- Perhaps like --validate=field.name,filename
- Add some row-based item sanity checks and fixes:
- Warn if item is Open Access, but missing a filename or URL
- Warn if item is Open Access, but missing a license
- Warn if item has an ISSN but no journal title
- Update journal titles from ISSN
- Migrate to https://github.com/spdx/license-list-data
## License
This work is licensed under the [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).

View File

@ -1,10 +1,13 @@
from csv_metadata_quality import app
# SPDX-License-Identifier: GPL-3.0-only
from sys import argv
from csv_metadata_quality import app
def main():
app.run(argv)
if __name__ == '__main__':
if __name__ == "__main__":
main()

View File

@ -1,81 +1,232 @@
from csv_metadata_quality.version import VERSION
# SPDX-License-Identifier: GPL-3.0-only
import argparse
import csv_metadata_quality.check as check
import csv_metadata_quality.fix as fix
import pandas as pd
import re
import signal
import sys
import pandas as pd
from colorama import Fore
import csv_metadata_quality.check as check
import csv_metadata_quality.experimental as experimental
import csv_metadata_quality.fix as fix
from csv_metadata_quality.version import VERSION
def parse_args(argv):
parser = argparse.ArgumentParser(description='Metadata quality checker and fixer.')
parser.add_argument('--agrovoc-fields', '-a', help='Comma-separated list of fields to validate against AGROVOC, for example: dc.subject,cg.coverage.country')
parser.add_argument('--input-file', '-i', help='Path to input file. Can be UTF-8 CSV or Excel XLSX.', required=True, type=argparse.FileType('r', encoding='UTF-8'))
parser.add_argument('--output-file', '-o', help='Path to output file (always CSV).', required=True, type=argparse.FileType('w', encoding='UTF-8'))
parser.add_argument('--unsafe-fixes', '-u', help='Perform unsafe fixes.', action='store_true')
parser.add_argument('--version', '-V', action='version', version=f'CSV Metadata Quality v{VERSION}')
parser = argparse.ArgumentParser(description="Metadata quality checker and fixer.")
parser.add_argument(
"--agrovoc-fields",
"-a",
help="Comma-separated list of fields to validate against AGROVOC, for example: dcterms.subject,cg.coverage.country",
)
parser.add_argument(
"--drop-invalid-agrovoc",
"-d",
help="After validating metadata values against AGROVOC, drop invalid values.",
action="store_true",
)
parser.add_argument(
"--experimental-checks",
"-e",
help="Enable experimental checks like language detection",
action="store_true",
)
parser.add_argument(
"--input-file",
"-i",
help="Path to input file. Must be a UTF-8 CSV.",
required=True,
type=argparse.FileType("r", encoding="UTF-8"),
)
parser.add_argument(
"--output-file",
"-o",
help="Path to output file (always CSV).",
required=True,
type=argparse.FileType("w", encoding="UTF-8"),
)
parser.add_argument(
"--unsafe-fixes", "-u", help="Perform unsafe fixes.", action="store_true"
)
parser.add_argument(
"--version", "-V", action="version", version=f"CSV Metadata Quality v{VERSION}"
)
parser.add_argument(
"--exclude-fields",
"-x",
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dcterms.bibliographicCitation",
)
args = parser.parse_args()
return args
def signal_handler(signal, frame):
sys.exit(1)
def run(argv):
args = parse_args(argv)
# set the signal handler for SIGINT (^C)
signal.signal(signal.SIGINT, signal_handler)
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
df = pd.read_csv(args.input_file, dtype=str)
for column in df.columns.values.tolist():
# Check if the user requested to skip any fields
if args.exclude_fields:
# Split the list of excluded fields on ',' into a list. Note that the
# user should be careful to no include spaces here.
exclude = args.exclude_fields.split(",")
else:
exclude = list()
for column in df.columns:
if column in exclude:
print(f"{Fore.YELLOW}Skipping {Fore.RESET}{column}")
continue
# Fix: whitespace
df[column] = df[column].apply(fix.whitespace)
df[column] = df[column].apply(fix.whitespace, field_name=column)
# Fix: newlines
if args.unsafe_fixes:
df[column] = df[column].apply(fix.newlines)
df[column] = df[column].apply(fix.newlines, field_name=column)
# Fix: missing space after comma. Only run on author and citation
# fields for now, as this problem is mostly an issue in names.
if args.unsafe_fixes:
match = re.match(r"^.*?(author|citation).*$", column)
if match is not None:
df[column] = df[column].apply(fix.comma_space, field_name=column)
# Fix: perform Unicode normalization (NFC) to convert decomposed
# characters into their canonical forms.
if args.unsafe_fixes:
df[column] = df[column].apply(fix.normalize_unicode, field_name=column)
# Check: suspicious characters
df[column].apply(check.suspicious_characters, field_name=column)
# Fix: mojibake. If unsafe fixes are not enabled then we only check.
if args.unsafe_fixes:
df[column] = df[column].apply(fix.mojibake, field_name=column)
else:
df[column].apply(check.mojibake, field_name=column)
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Check: invalid multi-value separator
df[column] = df[column].apply(check.separators)
# Check: suspicious characters
df[column] = df[column].apply(check.suspicious_characters)
# Fix: invalid multi-value separator
if args.unsafe_fixes:
df[column] = df[column].apply(fix.separators)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace)
# Fix: invalid and unnecessary multi-value separators
df[column] = df[column].apply(fix.separators, field_name=column)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace, field_name=column)
# Fix: duplicate metadata values
df[column] = df[column].apply(fix.duplicates)
df[column] = df[column].apply(fix.duplicates, field_name=column)
# Check: invalid AGROVOC subject
# Check: invalid AGROVOC subject and optionally drop them
if args.agrovoc_fields:
# Identify fields the user wants to validate against AGROVOC
for field in args.agrovoc_fields.split(','):
for field in args.agrovoc_fields.split(","):
if column == field:
df[column] = df[column].apply(check.agrovoc, field_name=column)
df[column] = df[column].apply(
check.agrovoc, field_name=column, drop=args.drop_invalid_agrovoc
)
# Check: invalid language
match = re.match(r'^.*?language.*$', column)
match = re.match(r"^.*?language.*$", column)
if match is not None:
df[column] = df[column].apply(check.language)
df[column].apply(check.language)
# Check: invalid ISSN
match = re.match(r'^.*?issn.*$', column)
match = re.match(r"^.*?issn.*$", column)
if match is not None:
df[column] = df[column].apply(check.issn)
df[column].apply(check.issn)
# Check: invalid ISBN
match = re.match(r'^.*?isbn.*$', column)
match = re.match(r"^.*?isbn.*$", column)
if match is not None:
df[column] = df[column].apply(check.isbn)
df[column].apply(check.isbn)
# Check: invalid date
match = re.match(r'^.*?date.*$', column)
match = re.match(r"^.*?(date|dcterms\.issued).*$", column)
if match is not None:
df[column] = df[column].apply(check.date)
df[column].apply(check.date, field_name=column)
# Check: filename extension
if column == "filename":
df[column].apply(check.filename_extension)
# Check: SPDX license identifier
match = re.match(r"dcterms\.license.*$", column)
if match is not None:
df[column].apply(check.spdx_license_identifier)
### End individual column checks ###
# Check: duplicate items
# We extract just the title, type, and date issued columns to analyze
try:
duplicates_df = df.filter(
regex=r"dcterms\.title|dc\.title|dcterms\.type|dc\.type|dcterms\.issued|dc\.date\.issued"
)
check.duplicate_items(duplicates_df)
# Delete the temporary duplicates DataFrame
del duplicates_df
except IndexError:
pass
##
# Perform some checks on rows so we can consider items as a whole rather
# than simple on a field-by-field basis. This allows us to check whether
# the language used in the title and abstract matches the language indi-
# cated in the language field, for example.
#
# This is slower and apparently frowned upon in the Pandas community be-
# cause it requires iterating over rows rather than using apply over a
# column. For now it will have to do.
##
# Transpose the DataFrame so we can consider each row as a column
df_transposed = df.T
# Remember, here a "column" is an item (previously row). Perhaps I
# should rename column in this for loop...
for column in df_transposed.columns:
# Check: citation DOI
check.citation_doi(df_transposed[column], exclude)
# Check: title in citation
check.title_in_citation(df_transposed[column], exclude)
if args.unsafe_fixes:
# Fix: countries match regions
df_transposed[column] = fix.countries_match_regions(
df_transposed[column], exclude
)
else:
# Check: countries match regions
check.countries_match_regions(df_transposed[column], exclude)
if args.experimental_checks:
experimental.correct_language(df_transposed[column], exclude)
# Transpose the DataFrame back before writing. This is probably wasteful to
# do every time since we technically only need to do it if we've done the
# countries/regions fix above, but I can't think of another way for now.
df_transposed_back = df_transposed.T
# Write
df.to_csv(args.output_file, index=False)
df_transposed_back.to_csv(args.output_file, index=False)
# Close the input and output files before exiting
args.input_file.close()
args.output_file.close()
sys.exit(0)

View File

@ -1,4 +1,21 @@
# SPDX-License-Identifier: GPL-3.0-only
import logging
import os
import re
from datetime import datetime, timedelta
import country_converter as coco
import pandas as pd
import requests
import requests_cache
import spdx_license_list
from colorama import Fore
from pycountry import languages
from stdnum import isbn as stdnum_isbn
from stdnum import issn as stdnum_issn
from csv_metadata_quality.util import is_mojibake
def issn(field):
@ -11,19 +28,17 @@ def issn(field):
See: https://arthurdejong.org/python-stdnum/doc/1.11/index.html#stdnum.module.is_valid
"""
from stdnum import issn
# Skip fields with missing values
if pd.isna(field):
return
# Try to split multi-value field on "||" separator
for value in field.split('||'):
for value in field.split("||"):
if not issn.is_valid(value):
print(f'Invalid ISSN: {value}')
if not stdnum_issn.is_valid(value):
print(f"{Fore.RED}Invalid ISSN: {Fore.RESET}{value}")
return field
return
def isbn(field):
@ -36,46 +51,20 @@ def isbn(field):
See: https://arthurdejong.org/python-stdnum/doc/1.11/index.html#stdnum.module.is_valid
"""
from stdnum import isbn
# Skip fields with missing values
if pd.isna(field):
return
# Try to split multi-value field on "||" separator
for value in field.split('||'):
for value in field.split("||"):
if not isbn.is_valid(value):
print(f'Invalid ISBN: {value}')
if not stdnum_isbn.is_valid(value):
print(f"{Fore.RED}Invalid ISBN: {Fore.RESET}{value}")
return field
return
def separators(field):
"""Check for invalid multi-value separators (ie "|" or "|||").
Prints the field with the invalid multi-value separator.
"""
import re
# Skip fields with missing values
if pd.isna(field):
return
# Try to split multi-value field on "||" separator
for value in field.split('||'):
# After splitting, see if there are any remaining "|" characters
match = re.findall(r'^.*?\|.*$', value)
if match:
print(f'Invalid multi-value separator: {field}')
return field
def date(field):
def date(field, field_name):
"""Check if a date is valid.
In DSpace the issue date is usually 1990, 1990-01, or 1990-01-01, but it
@ -85,50 +74,59 @@ def date(field):
Prints the date if invalid.
"""
from datetime import datetime
if pd.isna(field):
print(f'Missing date.')
print(f"{Fore.RED}Missing date ({field_name}).{Fore.RESET}")
return
# Try to split multi-value field on "||" separator
multiple_dates = field.split('||')
multiple_dates = field.split("||")
# We don't allow multi-value date fields
if len(multiple_dates) > 1:
print(f'Multiple dates not allowed: {field}')
print(
f"{Fore.RED}Multiple dates not allowed ({field_name}): {Fore.RESET}{field}"
)
return field
return
try:
# Check if date is valid YYYY format
datetime.strptime(field, '%Y')
datetime.strptime(field, "%Y")
return field
return
except ValueError:
pass
try:
# Check if date is valid YYYY-MM format
datetime.strptime(field, '%Y-%m')
datetime.strptime(field, "%Y-%m")
return field
return
except ValueError:
pass
try:
# Check if date is valid YYYY-MM-DD format
datetime.strptime(field, '%Y-%m-%d')
datetime.strptime(field, "%Y-%m-%d")
return field
return
except ValueError:
print(f'Invalid date: {field}')
pass
return field
try:
# Check if date is valid YYYY-MM-DDTHH:MM:SSZ format
datetime.strptime(field, "%Y-%m-%dT%H:%M:%SZ")
return
except ValueError:
print(f"{Fore.RED}Invalid date ({field_name}): {Fore.RESET}{field}")
return
def suspicious_characters(field):
def suspicious_characters(field, field_name):
"""Warn about suspicious characters.
Look for standalone characters that could indicate encoding or copy/paste
@ -140,25 +138,34 @@ def suspicious_characters(field):
return
# List of suspicious characters, for example: ́ˆ~`
suspicious_characters = ['\u00B4', '\u02C6', '\u007E', '\u0060']
suspicious_characters = ["\u00B4", "\u02C6", "\u007E", "\u0060"]
for character in suspicious_characters:
character_set = set(character)
# Find the position of the suspicious character in the string
suspicious_character_position = field.find(character)
if character_set.issubset(field):
print(f'Suspicious character: {field}')
# Python returns -1 if there is no match
if suspicious_character_position != -1:
# Create a temporary new string starting from the position of the
# suspicious character
field_subset = field[suspicious_character_position:]
return field
# Print part of the metadata value starting from the suspicious
# character and spanning enough of the rest to give a preview,
# but not too much to cause the line to break in terminals with
# a default of 80 characters width.
suspicious_character_msg = f"{Fore.YELLOW}Suspicious character ({field_name}): {Fore.RESET}{field_subset}"
print(f"{suspicious_character_msg:1.80}")
return
def language(field):
"""Check if a language is valid ISO 639-2 or ISO 639-3.
"""Check if a language is valid ISO 639-1 (alpha 2) or ISO 639-3 (alpha 3).
Prints the value if it is invalid.
"""
from pycountry import languages
# Skip fields with missing values
if pd.isna(field):
return
@ -166,27 +173,23 @@ def language(field):
# need to handle "Other" values here...
# Try to split multi-value field on "||" separator
for value in field.split('||'):
for value in field.split("||"):
# After splitting, check if language value is 2 or 3 characters so we
# can check it against ISO 639-2 or ISO 639-3 accordingly.
# can check it against ISO 639-1 or ISO 639-3 accordingly.
if len(value) == 2:
if not languages.get(alpha_2=value):
print(f'Invalid ISO 639-2 language: {value}')
pass
print(f"{Fore.RED}Invalid ISO 639-1 language: {Fore.RESET}{value}")
elif len(value) == 3:
if not languages.get(alpha_3=value):
print(f'Invalid ISO 639-3 language: {value}')
pass
print(f"{Fore.RED}Invalid ISO 639-3 language: {Fore.RESET}{value}")
else:
print(f'Invalid language: {value}')
print(f"{Fore.RED}Invalid language: {Fore.RESET}{value}")
return field
return
def agrovoc(field, field_name):
def agrovoc(field, field_name, drop):
"""Check subject terms against AGROVOC REST API.
Function constructor expects the field as well as the field name because
@ -200,45 +203,354 @@ def agrovoc(field, field_name):
Prints a warning if the value is invalid.
"""
from datetime import timedelta
import re
import requests
import requests_cache
# Skip fields with missing values
if pd.isna(field):
return
# enable transparent request cache with thirty days expiry
expire_after = timedelta(days=30)
# Allow overriding the location of the requests cache, just in case we are
# running in an environment where we can't write to the current working di-
# rectory (for example from csv-metadata-quality-web).
REQUESTS_CACHE_DIR = os.environ.get("REQUESTS_CACHE_DIR", ".")
requests_cache.install_cache(
f"{REQUESTS_CACHE_DIR}/agrovoc-response-cache", expire_after=expire_after
)
# prune old cache entries
# requests_cache.remove_expired_responses()
# Initialize an empty list to hold the validated AGROVOC values
values = list()
# Try to split multi-value field on "||" separator
for value in field.split("||"):
request_url = "http://agrovoc.uniroma2.it/agrovoc/rest/v1/agrovoc/search"
request_params = {"query": value}
request = requests.get(request_url, params=request_params)
if request.status_code == requests.codes.ok:
data = request.json()
# check if there are any results
if len(data["results"]) == 0:
if drop:
print(
f"{Fore.GREEN}Dropping invalid AGROVOC ({field_name}): {Fore.RESET}{value}"
)
else:
print(
f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{value}"
)
# value is invalid AGROVOC, but we are not dropping
values.append(value)
else:
# value is valid AGROVOC so save it
values.append(value)
# Create a new field consisting of all values joined with "||"
new_field = "||".join(values)
return new_field
def filename_extension(field):
"""Check filename extension.
CSVs with a 'filename' column are likely meant as input for the SAFBuilder
tool, which creates a Simple Archive Format bundle for importing metadata
with accompanying PDFs or other files into DSpace.
This check warns if a filename has an uncommon extension (that is, other
than .pdf, .xls(x), .doc(x), ppt(x), case insensitive).
"""
# Skip fields with missing values
if pd.isna(field):
return
# Try to split multi-value field on "||" separator
for value in field.split('||'):
# match lines beginning with words, paying attention to subjects with
# special characters like spaces, quotes, dashes, parentheses, etc:
# SUBJECT
# ANOTHER SUBJECT
# XANTHOMONAS CAMPESTRIS PV. MANIHOTIS
# WOMEN'S PARTICIPATION
# COMMUNITY-BASED FOREST MANAGEMENT
# INTERACCIÓN GENOTIPO AMBIENTE
# COCOA (PLANT)
pattern = re.compile(r'^[\w\-\.\'\(\)]+?[\w\s\-\.\'\(\)]+$')
values = field.split("||")
if pattern.match(value):
request_url = f'http://agrovoc.uniroma2.it/agrovoc/rest/v1/agrovoc/search?query={value}'
# List of common filename extentions
common_filename_extensions = [
".pdf",
".doc",
".docx",
".ppt",
".pptx",
".xls",
".xlsx",
]
# enable transparent request cache with thirty days expiry
expire_after = timedelta(days=30)
requests_cache.install_cache('agrovoc-response-cache', expire_after=expire_after)
# Iterate over all values
for value in values:
# Assume filename extension does not match
filename_extension_match = False
request = requests.get(request_url)
for filename_extension in common_filename_extensions:
# Check for extension at the end of the filename
pattern = re.escape(filename_extension) + r"$"
match = re.search(pattern, value, re.IGNORECASE)
# prune old cache entries
requests_cache.core.remove_expired_responses()
if match is not None:
# Register the match and stop checking for this filename
filename_extension_match = True
if request.status_code == requests.codes.ok:
data = request.json()
break
# check if there are any results
if len(data['results']) == 0:
print(f'Invalid AGROVOC ({field_name}): {value}')
if filename_extension_match is False:
print(f"{Fore.YELLOW}Filename with uncommon extension: {Fore.RESET}{value}")
return field
return
def spdx_license_identifier(field):
"""Check if a license is a valid SPDX identifier.
Prints the value if it is invalid.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Try to split multi-value field on "||" separator
for value in field.split("||"):
if value not in spdx_license_list.LICENSES:
print(f"{Fore.YELLOW}Non-SPDX license identifier: {Fore.RESET}{value}")
return
def duplicate_items(df):
"""Attempt to identify duplicate items.
First we check the total number of titles and compare it with the number of
unique titles. If there are less unique titles than total titles we expand
the search by creating a key (of sorts) for each item that includes their
title, type, and date issued, and compare it with all the others. If there
are multiple occurrences of the same title, type, date string then it's a
very good indicator that the items are duplicates.
"""
# Extract the names of the title, type, and date issued columns so we can
# reference them later. First we filter columns by likely patterns, then
# we extract the name from the first item of the resulting object, ie:
#
# Index(['dcterms.title[en_US]'], dtype='object')
#
# But, we need to consider that dc.title.alternative might come before the
# main title in the CSV, so use a negative lookahead to eliminate that.
#
# See: https://regex101.com/r/elyXkW/1
title_column_name = df.filter(
regex=r"^(dc|dcterms)\.title(?!\.alternative).*$"
).columns[0]
type_column_name = df.filter(regex=r"^(dcterms\.type|dc\.type).*$").columns[0]
date_column_name = df.filter(
regex=r"^(dcterms\.issued|dc\.date\.accessioned).*$"
).columns[0]
items_count_total = df[title_column_name].count()
items_count_unique = df[title_column_name].nunique()
if items_count_unique < items_count_total:
# Create a list to hold our items while we check for duplicates
items = list()
for index, row in df.iterrows():
item_title_type_date = f"{row[title_column_name]}{row[type_column_name]}{row[date_column_name]}"
if item_title_type_date in items:
print(
f"{Fore.YELLOW}Possible duplicate ({title_column_name}): {Fore.RESET}{row[title_column_name]}"
)
else:
items.append(item_title_type_date)
def mojibake(field, field_name):
"""Check for mojibake (text that was encoded in one encoding and decoded in
in another, perhaps multiple times). See util.py.
Prints the string if it contains suspected mojibake.
"""
# Skip fields with missing values
if pd.isna(field):
return
if is_mojibake(field):
print(
f"{Fore.YELLOW}Possible encoding issue ({field_name}): {Fore.RESET}{field}"
)
return
def citation_doi(row, exclude):
"""Check for the scenario where an item has a DOI listed in its citation,
but does not have a cg.identifier.doi field.
Function prints a warning if the DOI field is missing, but there is a DOI
in the citation.
"""
# Check if the user requested us to skip any DOI fields so we can
# just return before going any further.
for field in exclude:
match = re.match(r"^.*?doi.*$", field)
if match is not None:
return
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
citation = ""
# Iterate over the labels of the current row's values to check if a DOI
# exists. If not, then we extract the citation to see if there is a DOI
# listed there.
for label in row.axes[0]:
# Skip fields with missing values
if pd.isna(row[label]):
continue
# If a DOI field exists we don't need to check the citation
match = re.match(r"^.*?doi.*$", label)
if match is not None:
return
# Check if the current label is a citation field and make sure the user
# hasn't asked to skip it. If not, then set the citation.
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None and label not in exclude:
citation = row[label]
if citation != "":
# Check the citation for "doi: 10.1186/1743-422X-9-218"
doi_match1 = re.match(r"^.*?doi:\s.*$", citation)
# Check the citation for a DOI URL (doi.org, dx.doi.org, etc)
doi_match2 = re.match(r"^.*?doi\.org.*$", citation)
if doi_match1 is not None or doi_match2 is not None:
print(
f"{Fore.YELLOW}DOI in citation, but missing a DOI field: {Fore.RESET}{citation}"
)
return
def title_in_citation(row, exclude):
"""Check for the scenario where an item's title is missing from its cita-
tion. This could mean that it is missing entirely, or perhaps just exists
in a different format (whitespace, accents, etc).
Function prints a warning if the title does not appear in the citation.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
title = ""
citation = ""
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
for label in row.axes[0]:
# Skip fields with missing values
if pd.isna(row[label]):
continue
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None and label not in exclude:
title = row[label]
# Find the name of the citation column
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None and label not in exclude:
citation = row[label]
if citation != "":
if title not in citation:
print(f"{Fore.YELLOW}Title is not present in citation: {Fore.RESET}{title}")
return
def countries_match_regions(row, exclude):
"""Check for the scenario where an item has country coverage metadata, but
does not have the corresponding region metadata. For example, an item that
has country coverage "Kenya" should also have region "Eastern Africa" acc-
ording to the UN M.49 classification scheme.
See: https://unstats.un.org/unsd/methodology/m49/
Function prints a warning if the appropriate region is not present.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
country_column_name = ""
region_column_name = ""
title_column_name = ""
# Instantiate a CountryConverter() object here. According to the docs it is
# more performant to do that as opposed to calling coco.convert() directly
# because we don't need to re-load the country data with each iteration.
cc = coco.CountryConverter()
# Set logging to ERROR so country_converter's convert() doesn't print the
# "not found in regex" warning message to the screen.
logging.basicConfig(level=logging.ERROR)
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
for label in row.axes[0]:
# Find the name of the country column
match = re.match(r"^.*?country.*$", label)
if match is not None:
country_column_name = label
# Find the name of the region column
match = re.match(r"^.*?region.*$", label)
if match is not None:
region_column_name = label
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None:
title_column_name = label
# Make sure the user has not asked to exclude any metadata fields. If so, we
# should return immediately.
column_names = [country_column_name, region_column_name, title_column_name]
if any(field in column_names for field in exclude):
return
# Make sure we found the country and region columns
if country_column_name != "" and region_column_name != "":
# If we don't have any countries then we should return early before
# suggesting regions.
if row[country_column_name] is not None:
countries = row[country_column_name].split("||")
else:
return
if row[region_column_name] is not None:
regions = row[region_column_name].split("||")
else:
regions = list()
for country in countries:
# Look up the UN M.49 regions for this country code. CoCo seems to
# only list the direct region, ie Western Africa, rather than all
# the parent regions ("Sub-Saharan Africa", "Africa", "World")
un_region = cc.convert(names=country, to="UNRegion")
if un_region != "not found" and un_region not in regions:
print(
f"{Fore.YELLOW}Missing region ({un_region}): {Fore.RESET}{row[title_column_name]}"
)
return

View File

@ -0,0 +1,99 @@
# SPDX-License-Identifier: GPL-3.0-only
import re
import langid
import pandas as pd
from colorama import Fore
from pycountry import languages
def correct_language(row, exclude):
"""Analyze the text used in the title, abstract, and citation fields to pre-
dict the language being used and compare it with the item's dc.language.iso
field.
Function prints an error if the language field does not match the detected
language and returns the value in the language field if it does match.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
language = ""
sample_strings = list()
title = None
# Iterate over the labels of the current row's values. Before we transposed
# the DataFrame these were the columns in the CSV, ie dc.title and dc.type.
for label in row.axes[0]:
# Skip fields with missing values
if pd.isna(row[label]):
continue
# Check if current row has multiple language values (separated by "||")
match = re.match(r"^.*?language.*$", label)
if match is not None:
# Skip fields with multiple language values
if "||" in row[label]:
return
language = row[label]
# Extract title if it is present (note that we don't allow excluding
# the title here because it complicates things).
match = re.match(r"^.*?title.*$", label)
if match is not None:
title = row[label]
# Append title to sample strings
sample_strings.append(row[label])
# Extract abstract if it is present
match = re.match(r"^.*?abstract.*$", label)
if match is not None and label not in exclude:
sample_strings.append(row[label])
# Extract citation if it is present
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None and label not in exclude:
sample_strings.append(row[label])
# Make sure language is not blank and is valid ISO 639-1/639-3 before proceeding with language prediction
if language != "":
# Check language value like "es"
if len(language) == 2:
if not languages.get(alpha_2=language):
return
# Check language value like "spa"
elif len(language) == 3:
if not languages.get(alpha_3=language):
return
# Language value is something else like "Span", do not proceed
else:
return
# Language is blank, do not proceed
else:
return
# Concatenate all sample strings into one string
sample_text = " ".join(sample_strings)
# Restrict the langid detection space to reduce false positives
langid.set_languages(
["ar", "de", "en", "es", "fr", "hi", "it", "ja", "ko", "pt", "ru", "vi", "zh"]
)
langid_classification = langid.classify(sample_text)
# langid returns an ISO 639-1 (alpha 2) representation of the detected language, but the current item's language field might be ISO 639-3 (alpha 3) so we should use a pycountry Language object to compare both represenations and give appropriate error messages that match the format used by in the input file.
detected_language = languages.get(alpha_2=langid_classification[0])
if len(language) == 2 and language != detected_language.alpha_2:
print(
f"{Fore.YELLOW}Possibly incorrect language {language} (detected {detected_language.alpha_2}): {Fore.RESET}{title}"
)
elif len(language) == 3 and language != detected_language.alpha_3:
print(
f"{Fore.YELLOW}Possibly incorrect language {language} (detected {detected_language.alpha_3}): {Fore.RESET}{title}"
)
else:
return

View File

@ -1,8 +1,18 @@
import pandas as pd
# SPDX-License-Identifier: GPL-3.0-only
import logging
import re
from unicodedata import normalize
import country_converter as coco
import pandas as pd
from colorama import Fore
from ftfy import TextFixerConfig, fix_text
from csv_metadata_quality.util import is_mojibake, is_nfc
def whitespace(field):
def whitespace(field, field_name):
"""Fix whitespace issues.
Return string with leading, trailing, and consecutive whitespace trimmed.
@ -16,29 +26,38 @@ def whitespace(field):
values = list()
# Try to split multi-value field on "||" separator
for value in field.split('||'):
for value in field.split("||"):
# Strip leading and trailing whitespace
value = value.strip()
# Replace excessive whitespace (>2) with one space
pattern = re.compile(r'\s{2,}')
pattern = re.compile(r"\s{2,}")
match = re.findall(pattern, value)
if match:
print(f'Excessive whitespace: {value}')
value = re.sub(pattern, ' ', value)
print(
f"{Fore.GREEN}Removing excessive whitespace ({field_name}): {Fore.RESET}{value}"
)
value = re.sub(pattern, " ", value)
# Save cleaned value
values.append(value)
# Create a new field consisting of all values joined with "||"
new_field = '||'.join(values)
new_field = "||".join(values)
return new_field
def separators(field):
"""Fix for invalid multi-value separators (ie "|")."""
def separators(field, field_name):
"""Fix for invalid and unnecessary multi-value separators, for example:
value|value
value|||value
value||value||
Prints the field with the invalid multi-value separator.
"""
# Skip fields with missing values
if pd.isna(field):
@ -48,34 +67,48 @@ def separators(field):
values = list()
# Try to split multi-value field on "||" separator
for value in field.split('||'):
for value in field.split("||"):
# Check if the value is blank and skip it
if value == "":
print(
f"{Fore.GREEN}Fixing unnecessary multi-value separator ({field_name}): {Fore.RESET}{field}"
)
continue
# After splitting, see if there are any remaining "|" characters
pattern = re.compile(r'\|')
pattern = re.compile(r"\|")
match = re.findall(pattern, value)
if match:
print(f'Fixing invalid multi-value separator: {value}')
print(
f"{Fore.GREEN}Fixing invalid multi-value separator ({field_name}): {Fore.RESET}{value}"
)
value = re.sub(pattern, '||', value)
value = re.sub(pattern, "||", value)
# Save cleaned value
values.append(value)
# Create a new field consisting of all values joined with "||"
new_field = '||'.join(values)
new_field = "||".join(values)
return new_field
def unnecessary_unicode(field):
"""Remove unnecessary Unicode characters.
"""Remove and replace unnecessary Unicode characters.
Removes unnecessary Unicode characters like:
- Zero-width space (U+200B)
- Replacement character (U+FFFD)
- No-break space (U+00A0)
Return string with characters removed.
Replaces unnecessary Unicode characters like:
- Soft hyphen (U+00AD) → hyphen
- No-break space (U+00A0) → space
- Thin space (U+2009) → space
Return string with characters removed or replaced.
"""
# Skip fields with missing values
@ -83,33 +116,55 @@ def unnecessary_unicode(field):
return
# Check for zero-width space characters (U+200B)
pattern = re.compile(r'\u200B')
pattern = re.compile(r"\u200B")
match = re.findall(pattern, field)
if match:
print(f'Removing unnecessary Unicode (U+200B): {field}')
field = re.sub(pattern, '', field)
print(f"{Fore.GREEN}Removing unnecessary Unicode (U+200B): {Fore.RESET}{field}")
field = re.sub(pattern, "", field)
# Check for replacement characters (U+FFFD)
pattern = re.compile(r'\uFFFD')
pattern = re.compile(r"\uFFFD")
match = re.findall(pattern, field)
if match:
print(f'Removing unnecessary Unicode (U+FFFD): {field}')
field = re.sub(pattern, '', field)
print(f"{Fore.GREEN}Removing unnecessary Unicode (U+FFFD): {Fore.RESET}{field}")
field = re.sub(pattern, "", field)
# Check for no-break spaces (U+00A0)
pattern = re.compile(r'\u00A0')
pattern = re.compile(r"\u00A0")
match = re.findall(pattern, field)
if match:
print(f'Removing unnecessary Unicode (U+00A0): {field}')
field = re.sub(pattern, '', field)
print(
f"{Fore.GREEN}Replacing unnecessary Unicode (U+00A0): {Fore.RESET}{field}"
)
field = re.sub(pattern, " ", field)
# Check for soft hyphens (U+00AD), sometimes preceeded with a normal hyphen
pattern = re.compile(r"\u002D*?\u00AD")
match = re.findall(pattern, field)
if match:
print(
f"{Fore.GREEN}Replacing unnecessary Unicode (U+00AD): {Fore.RESET}{field}"
)
field = re.sub(pattern, "-", field)
# Check for thin spaces (U+2009)
pattern = re.compile(r"\u2009")
match = re.findall(pattern, field)
if match:
print(
f"{Fore.GREEN}Replacing unnecessary Unicode (U+2009): {Fore.RESET}{field}"
)
field = re.sub(pattern, " ", field)
return field
def duplicates(field):
def duplicates(field, field_name):
"""Remove duplicate metadata values."""
# Skip fields with missing values
@ -117,7 +172,7 @@ def duplicates(field):
return
# Try to split multi-value field on "||" separator
values = field.split('||')
values = field.split("||")
# Initialize an empty list to hold the de-duplicated values
new_values = list()
@ -128,15 +183,17 @@ def duplicates(field):
if value not in new_values:
new_values.append(value)
else:
print(f'Dropping duplicate value: {value}')
print(
f"{Fore.GREEN}Removing duplicate value ({field_name}): {Fore.RESET}{value}"
)
# Create a new field consisting of all values joined with "||"
new_field = '||'.join(new_values)
new_field = "||".join(new_values)
return new_field
def newlines(field):
def newlines(field, field_name):
"""Fix newlines.
Single metadata values should not span multiple lines because this is not
@ -158,10 +215,175 @@ def newlines(field):
return
# Check for Unix line feed (LF)
match = re.findall(r'\n', field)
match = re.findall(r"\n", field)
if match:
print(f'Removing newline: {field}')
field = field.replace('\n', '')
print(f"{Fore.GREEN}Removing newline ({field_name}): {Fore.RESET}{field}")
field = field.replace("\n", "")
return field
def comma_space(field, field_name):
"""Fix occurrences of commas missing a trailing space, for example:
Orth,Alan S.
This is a very common mistake in author and citation fields.
Return string with a space added.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Check for comma followed by a word character
match = re.findall(r",\w", field)
if match:
print(
f"{Fore.GREEN}Adding space after comma ({field_name}): {Fore.RESET}{field}"
)
field = re.sub(r",(\w)", r", \1", field)
return field
def normalize_unicode(field, field_name):
"""Fix occurrences of decomposed Unicode characters by normalizing them
with NFC to their canonical forms, for example:
Ouédraogo, Mathieu → Ouédraogo, Mathieu
Return normalized string.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Check if the current string is using normalized Unicode (NFC)
if not is_nfc(field):
print(f"{Fore.GREEN}Normalizing Unicode ({field_name}): {Fore.RESET}{field}")
field = normalize("NFC", field)
return field
def mojibake(field, field_name):
"""Attempts to fix mojibake (text that was encoded in one encoding and deco-
ded in another, perhaps multiple times). See util.py.
Return fixed string.
"""
# Skip fields with missing values
if pd.isna(field):
return field
# We don't want ftfy to change “smart quotes” to "ASCII quotes"
config = TextFixerConfig(uncurl_quotes=False)
if is_mojibake(field):
print(f"{Fore.GREEN}Fixing encoding issue ({field_name}): {Fore.RESET}{field}")
return fix_text(field, config)
else:
return field
def countries_match_regions(row, exclude):
"""Check for the scenario where an item has country coverage metadata, but
does not have the corresponding region metadata. For example, an item that
has country coverage "Kenya" should also have region "Eastern Africa" acc-
ording to the UN M.49 classification scheme.
See: https://unstats.un.org/unsd/methodology/m49/
Return fixed string.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
country_column_name = ""
region_column_name = ""
title_column_name = ""
# Instantiate a CountryConverter() object here. According to the docs it is
# more performant to do that as opposed to calling coco.convert() directly
# because we don't need to re-load the country data with each iteration.
cc = coco.CountryConverter()
# Set logging to ERROR so country_converter's convert() doesn't print the
# "not found in regex" warning message to the screen.
logging.basicConfig(level=logging.ERROR)
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
for label in row.axes[0]:
# Find the name of the country column
match = re.match(r"^.*?country.*$", label)
if match is not None:
country_column_name = label
# Find the name of the region column
match = re.match(r"^.*?region.*$", label)
if match is not None:
region_column_name = label
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None:
title_column_name = label
# Make sure the user has not asked to exclude any metadata fields. If so, we
# should return immediately.
column_names = [country_column_name, region_column_name, title_column_name]
if any(field in column_names for field in exclude):
return row
# Make sure we found the country and region columns
if country_column_name != "" and region_column_name != "":
# If we don't have any countries then we should return early before
# suggesting regions.
if row[country_column_name] is not None:
countries = row[country_column_name].split("||")
else:
return row
if row[region_column_name] is not None:
regions = row[region_column_name].split("||")
else:
regions = list()
# An empty list for our regions so we can keep track for all countries
missing_regions = list()
for country in countries:
# Look up the UN M.49 regions for this country code. CoCo seems to
# only list the direct region, ie Western Africa, rather than all
# the parent regions ("Sub-Saharan Africa", "Africa", "World")
un_region = cc.convert(names=country, to="UNRegion")
# Add the new un_region to regions if it is not "not found" and if
# it doesn't already exist in regions.
if un_region != "not found" and un_region not in regions:
if un_region not in missing_regions:
print(
f"{Fore.YELLOW}Adding missing region ({un_region}): {Fore.RESET}{row[title_column_name]}"
)
missing_regions.append(un_region)
if len(missing_regions) > 0:
# Add the missing regions back to the row, paying attention to whether
# or not the row's region column is None (aka null) or just an empty
# string (length would be 0).
if row[region_column_name] is not None and len(row[region_column_name]) > 0:
row[region_column_name] = (
row[region_column_name] + "||" + "||".join(missing_regions)
)
else:
row[region_column_name] = "||".join(missing_regions)
return row

View File

@ -0,0 +1,51 @@
# SPDX-License-Identifier: GPL-3.0-only
from ftfy.badness import is_bad
def is_nfc(field):
"""Utility function to check whether a string is using normalized Unicode.
Python's built-in unicodedata library has the is_normalized() function, but
it was only introduced in Python 3.8. By using a simple utility function we
are able to run on Python >= 3.6 again.
See: https://docs.python.org/3/library/unicodedata.html
Return boolean.
"""
from unicodedata import normalize
return field == normalize("NFC", field)
def is_mojibake(field):
"""Determines whether a string contains mojibake.
We commonly deal with CSV files that were *encoded* in UTF-8, but decoded
as something else like CP-1252 (Windows Latin). This manifests in the form
of "mojibake", for example:
- CIAT Publicaçao
- CIAT Publicación
This uses the excellent "fixes text for you" (ftfy) library to determine
whether a string contains characters that have been encoded in one encoding
and decoded in another.
Inspired by this code snippet from Martijn Pieters on StackOverflow:
https://stackoverflow.com/questions/29071995/identify-garbage-unicode-string-using-python
Return boolean.
"""
if not is_bad(field):
# Nothing weird, should be okay
return False
try:
field.encode("sloppy-windows-1252")
except UnicodeEncodeError:
# Not CP-1252 encodable, probably fine
return False
else:
# Encodable as CP-1252, Mojibake alert level high
return True

View File

@ -1 +1,3 @@
VERSION = '0.1.0'
# SPDX-License-Identifier: GPL-3.0-only
VERSION = "0.6.0"

13
data/test-geography.csv Normal file
View File

@ -0,0 +1,13 @@
dc.title,dcterms.issued,dcterms.type,dc.contributor.author,cg.coverage.country,cg.coverage.region
No country,2022-09-01,Report,"Orth, Alan",,
Matching country and region,2022-09-01,Report,"Orth, Alan",Kenya,Eastern Africa
Missing region,2022-09-01,Report,"Orth, Alan",Kenya,
Caribbean country with matching region,2022-09-01,Report,"Orth, Alan",Bahamas,Caribbean
Caribbean country with no region,2022-09-01,Report,"Orth, Alan",Bahamas,
Fake country with no region,2022-09-01,Report,"Orth, Alan",Yeah Baby,
SE Asian country with matching region,2022-09-01,Report,"Orth, Alan",Cambodia,South-eastern Asia
SE Asian country with no region,2022-09-01,Report,"Orth, Alan",Cambodia,
Duplicate countries with matching region,2022-09-01,Report,"Orth, Alan",Kenya||Kenya,Eastern Africa
Duplicate countries with missing regions,2022-09-01,Report,"Orth, Alan",Kenya||Kenya,
Multiple countries with no regions,2022-09-01,Report,"Orth, Alan",Kenya||Bahamas,
Multiple countries with mixed matching regions,2022-09-01,Report,"Orth, Alan",Kenya||Bahamas,Eastern Africa
1 dc.title dcterms.issued dcterms.type dc.contributor.author cg.coverage.country cg.coverage.region
2 No country 2022-09-01 Report Orth, Alan
3 Matching country and region 2022-09-01 Report Orth, Alan Kenya Eastern Africa
4 Missing region 2022-09-01 Report Orth, Alan Kenya
5 Caribbean country with matching region 2022-09-01 Report Orth, Alan Bahamas Caribbean
6 Caribbean country with no region 2022-09-01 Report Orth, Alan Bahamas
7 Fake country with no region 2022-09-01 Report Orth, Alan Yeah Baby
8 SE Asian country with matching region 2022-09-01 Report Orth, Alan Cambodia South-eastern Asia
9 SE Asian country with no region 2022-09-01 Report Orth, Alan Cambodia
10 Duplicate countries with matching region 2022-09-01 Report Orth, Alan Kenya||Kenya Eastern Africa
11 Duplicate countries with missing regions 2022-09-01 Report Orth, Alan Kenya||Kenya
12 Multiple countries with no regions 2022-09-01 Report Orth, Alan Kenya||Bahamas
13 Multiple countries with mixed matching regions 2022-09-01 Report Orth, Alan Kenya||Bahamas Eastern Africa

View File

@ -1,23 +1,38 @@
dc.contributor.author,birthdate,dc.identifier.issn,dc.identifier.isbn,dc.language.iso,dc.subject,cg.coverage.country
Leading space,2019-07-29,,,,,
Trailing space ,2019-07-29,,,,,
Excessive space,2019-07-29,,,,,
Miscellaenous ||whitespace | issues ,2019-07-29,,,,,
Duplicate||Duplicate,2019-07-29,,,,,
Invalid ISSN,2019-07-29,2321-2302,,,,
Invalid ISBN,2019-07-29,,978-0-306-40615-6,,,
Multiple valid ISSNs,2019-07-29,0378-5955||0024-9319,,,,
Multiple valid ISBNs,2019-07-29,,99921-58-10-7||978-0-306-40615-7,,,
Invalid date,2019-07-260,,,,,
Multiple dates,2019-07-26||2019-01-10,,,,,
Invalid multi-value separator,2019-07-29,0378-5955|0024-9319,,,,
Unnecessary Unicode,2019-07-29,,,,,
Suspicious character||foreˆt,2019-07-29,,,,,
Invalid ISO 639-2 language,2019-07-29,,,jp,,
Invalid ISO 639-3 language,2019-07-29,,,chi,,
Invalid language,2019-07-29,,,Span,,
Invalid AGROVOC subject,2019-07-29,,,,FOREST,
dc.title,dcterms.issued,dc.identifier.issn,dc.identifier.isbn,dcterms.language,dcterms.subject,cg.coverage.country,filename,dcterms.license,dcterms.type,dcterms.bibliographicCitation,cg.identifier.doi,cg.coverage.region
Leading space,2019-07-29,,,,,,,,,,,
Trailing space ,2019-07-29,,,,,,,,,,,
Excessive space,2019-07-29,,,,,,,,,,,
Miscellaenous ||whitespace | issues ,2019-07-29,,,,,,,,,,,
Duplicate||Duplicate,2019-07-29,,,,,,,,,,,
Invalid ISSN,2019-07-29,2321-2302,,,,,,,,,,
Invalid ISBN,2019-07-29,,978-0-306-40615-6,,,,,,,,,
Multiple valid ISSNs,2019-07-29,0378-5955||0024-9319,,,,,,,,,,
Multiple valid ISBNs,2019-07-29,,99921-58-10-7||978-0-306-40615-7,,,,,,,,,
Invalid date,2019-07-260,,,,,,,,,,,
Multiple dates,2019-07-26||2019-01-10,,,,,,,,,,,
Invalid multi-value separator,2019-07-29,0378-5955|0024-9319,,,,,,,,,,
Unnecessary Unicode,2019-07-29,,,,,,,,,,,
Suspicious character||foreˆt,2019-07-29,,,,,,,,,,,
Invalid ISO 639-1 (alpha 2) language,2019-07-29,,,jp,,,,,,,,
Invalid ISO 639-3 (alpha 3) language,2019-07-29,,,chi,,,,,,,,
Invalid language,2019-07-29,,,Span,,,,,,,,
Invalid AGROVOC subject,2019-07-29,,,,LIVESTOCK||FOREST,,,,,,,
Newline (LF),2019-07-30,,,,"TANZA
NIA",
Missing date,,,,,,
Invalid country,2019-08-01,,,,,KENYAA
NIA",,,,,,,
Missing date,,,,,,,,,,,,
Invalid country,2019-08-01,,,,,KENYAA,,,,,,
Uncommon filename extension,2019-08-10,,,,,,file.pdf.lck,,,,,
Unneccesary unicode (U+002D + U+00AD),2019-08-10,,978-­92-­9043-­823-­6,,,,,,,,,
"Missing space,after comma",2019-08-27,,,,,,,,,,,
Incorrect ISO 639-1 language,2019-09-26,,,es,,,,,,,,
Incorrect ISO 639-3 language,2019-09-26,,,spa,,,,,,,,
Composéd Unicode,2020-01-14,,,,,,,,,,,
Decomposéd Unicode,2020-01-14,,,,,,,,,,,
Unnecessary multi-value separator,2021-01-03,0378-5955||,,,,,,,,,,
Invalid SPDX license identifier,2021-03-11,,,,,,,CC-BY,,,,
Duplicate Title,2021-03-17,,,,,,,,Report,,,
Duplicate Title,2021-03-17,,,,,,,,Report,,,
Mojibake,2021-03-18,,,,Publicaçao CIAT,,,,Report,,,
"DOI in citation, but missing cg.identifier.doi",2021-10-06,,,,,,,,,"Orth, A. 2021. DOI in citation, but missing cg.identifier.doi. doi: 10.1186/1743-422X-9-218",,
Title missing from citation,2021-12-05,,,,,,,,,"Orth, A. 2021. Title missing f rom citation.",,
Country missing region,2021-12-08,,,,,Kenya,,,,,,

1 dc.contributor.author dc.title birthdate dcterms.issued dc.identifier.issn dc.identifier.isbn dc.language.iso dcterms.language dc.subject dcterms.subject cg.coverage.country filename dcterms.license dcterms.type dcterms.bibliographicCitation cg.identifier.doi cg.coverage.region
2 Leading space 2019-07-29
3 Trailing space 2019-07-29
4 Excessive space 2019-07-29
5 Miscellaenous ||whitespace | issues 2019-07-29
6 Duplicate||Duplicate 2019-07-29
7 Invalid ISSN 2019-07-29 2321-2302
8 Invalid ISBN 2019-07-29 978-0-306-40615-6
9 Multiple valid ISSNs 2019-07-29 0378-5955||0024-9319
10 Multiple valid ISBNs 2019-07-29 99921-58-10-7||978-0-306-40615-7
11 Invalid date 2019-07-260
12 Multiple dates 2019-07-26||2019-01-10
13 Invalid multi-value separator 2019-07-29 0378-5955|0024-9319
14 Unnecessary Unicode​ 2019-07-29
15 Suspicious character||foreˆt 2019-07-29
16 Invalid ISO 639-2 language Invalid ISO 639-1 (alpha 2) language 2019-07-29 jp
17 Invalid ISO 639-3 language Invalid ISO 639-3 (alpha 3) language 2019-07-29 chi
18 Invalid language 2019-07-29 Span
19 Invalid AGROVOC subject 2019-07-29 FOREST LIVESTOCK||FOREST
20 Newline (LF) 2019-07-30 TANZA NIA
21 Missing date
22 Invalid country 2019-08-01 KENYAA
23 Uncommon filename extension 2019-08-10 file.pdf.lck
24 Unneccesary unicode (U+002D + U+00AD) 2019-08-10 978-­92-­9043-­823-­6
25 Missing space,after comma 2019-08-27
26 Incorrect ISO 639-1 language 2019-09-26 es
27 Incorrect ISO 639-3 language 2019-09-26 spa
28 Composéd Unicode 2020-01-14
29 Decomposéd Unicode 2020-01-14
30 Unnecessary multi-value separator 2021-01-03 0378-5955||
31 Invalid SPDX license identifier 2021-03-11 CC-BY
32 Duplicate Title 2021-03-17 Report
33 Duplicate Title 2021-03-17 Report
34 Mojibake 2021-03-18 Publicaçao CIAT Report
35 DOI in citation, but missing cg.identifier.doi 2021-10-06 Orth, A. 2021. DOI in citation, but missing cg.identifier.doi. doi: 10.1186/1743-422X-9-218
36 Title missing from citation 2021-12-05 Orth, A. 2021. Title missing f rom citation.
37 Country missing region 2021-12-08 Kenya
38

1232
poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

36
pyproject.toml Normal file
View File

@ -0,0 +1,36 @@
[tool.poetry]
name = "csv-metadata-quality"
version = "0.6.0"
description="A simple, but opinionated CSV quality checking and fixing pipeline for CSVs in the DSpace ecosystem."
authors = ["Alan Orth <alan.orth@gmail.com>"]
license="GPL-3.0-only"
repository = "https://github.com/ilri/csv-metadata-quality"
homepage = "https://github.com/ilri/csv-metadata-quality"
[tool.poetry.scripts]
csv-metadata-quality = 'csv_metadata_quality.__main__:main'
[tool.poetry.dependencies]
python = "^3.8"
pandas = "^1.4.0"
python-stdnum = "^1.13"
requests = "^2.28.1"
requests-cache = "^0.9.6"
pycountry = "^22.3.5"
langid = "^1.1.6"
colorama = "^0.4.5"
spdx-license-list = "^0.5.2"
ftfy = "^6.1.1"
country-converter = "^0.7.7"
[tool.poetry.dev-dependencies]
pytest = "^7.1.3"
flake8 = "^5.0.4"
pytest-clarity = "^1.0.1"
black = "^22.8.0"
isort = "^5.10.1"
csvkit = "^1.0.7"
[build-system]
requires = ["poetry>=0.12"]
build-backend = "poetry.masonry.api"

View File

@ -1,5 +1,5 @@
[pytest]
addopts= -rsxX -s -v --strict --capture=sys
addopts= -rsxX -s -v --strict-markers --capture=sys
filterwarnings =
error::UserWarning
ignore:.*U.* is deprecated:DeprecationWarning

View File

@ -1,30 +1,68 @@
-i https://pypi.org/simple
atomicwrites==1.3.0
attrs==19.1.0
backcall==0.1.0
decorator==4.4.0
entrypoints==0.3
flake8==3.7.8
importlib-metadata==0.19
ipython-genutils==0.2.0
ipython==7.7.0
jedi==0.14.1
mccabe==0.6.1
more-itertools==7.2.0
packaging==19.1
parso==0.5.1
pexpect==4.7.0 ; sys_platform != 'win32'
pickleshare==0.7.5
pluggy==0.12.0
prompt-toolkit==2.0.9
ptyprocess==0.6.0
py==1.8.0
pycodestyle==2.5.0
pyflakes==2.1.1
pygments==2.4.2
pyparsing==2.4.2
pytest==5.0.1
six==1.12.0
traitlets==4.3.2
wcwidth==0.1.7
zipp==0.5.2
agate-dbf==0.2.2 ; python_version >= "3.8" and python_version < "4.0"
agate-excel==0.2.5 ; python_version >= "3.8" and python_version < "4.0"
agate-sql==0.5.8 ; python_version >= "3.8" and python_version < "4.0"
agate==1.6.3 ; python_version >= "3.8" and python_version < "4.0"
appdirs==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
attrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
babel==2.10.3 ; python_version >= "3.8" and python_version < "4.0"
black==22.8.0 ; python_version >= "3.8" and python_version < "4.0"
cattrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
certifi==2022.6.15 ; python_version >= "3.8" and python_version < "4"
charset-normalizer==2.1.1 ; python_version >= "3.8" and python_version < "4"
click==8.1.3 ; python_version >= "3.8" and python_version < "4.0"
colorama==0.4.5 ; python_version >= "3.8" and python_version < "4.0"
commonmark==0.9.1 ; python_version >= "3.8" and python_version < "4.0"
country-converter==0.7.7 ; python_version >= "3.8" and python_version < "4.0"
csvkit==1.0.7 ; python_version >= "3.8" and python_version < "4.0"
dbfread==2.0.7 ; python_version >= "3.8" and python_version < "4.0"
et-xmlfile==1.1.0 ; python_version >= "3.8" and python_version < "4.0"
exceptiongroup==1.0.0rc9 ; python_version >= "3.8" and python_version <= "3.10"
flake8==5.0.4 ; python_version >= "3.8" and python_version < "4.0"
ftfy==6.1.1 ; python_version >= "3.8" and python_version < "4"
future==0.18.2 ; python_version >= "3.8" and python_version < "4.0"
greenlet==1.1.3 ; python_version >= "3.8" and (platform_machine == "aarch64" or platform_machine == "ppc64le" or platform_machine == "x86_64" or platform_machine == "amd64" or platform_machine == "AMD64" or platform_machine == "win32" or platform_machine == "WIN32") and python_version < "4.0"
idna==3.3 ; python_version >= "3.8" and python_version < "4"
iniconfig==1.1.1 ; python_version >= "3.8" and python_version < "4.0"
isodate==0.6.1 ; python_version >= "3.8" and python_version < "4.0"
isort==5.10.1 ; python_version >= "3.8" and python_version < "4.0"
langid==1.1.6 ; python_version >= "3.8" and python_version < "4.0"
leather==0.3.4 ; python_version >= "3.8" and python_version < "4.0"
mccabe==0.7.0 ; python_version >= "3.8" and python_version < "4.0"
mypy-extensions==0.4.3 ; python_version >= "3.8" and python_version < "4.0"
numpy==1.23.2 ; python_version < "4.0" and python_version >= "3.8"
olefile==0.46 ; python_version >= "3.8" and python_version < "4.0"
openpyxl==3.0.10 ; python_version >= "3.8" and python_version < "4.0"
packaging==21.3 ; python_version >= "3.8" and python_version < "4.0"
pandas==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
parsedatetime==2.4 ; python_version >= "3.8" and python_version < "4.0"
pathspec==0.10.1 ; python_version >= "3.8" and python_version < "4.0"
platformdirs==2.5.2 ; python_version >= "3.8" and python_version < "4.0"
pluggy==1.0.0 ; python_version >= "3.8" and python_version < "4.0"
pprintpp==0.4.0 ; python_version >= "3.8" and python_version < "4.0"
py==1.11.0 ; python_version >= "3.8" and python_version < "4.0"
pycodestyle==2.9.1 ; python_version >= "3.8" and python_version < "4.0"
pycountry==22.3.5 ; python_version >= "3.8" and python_version < "4"
pyflakes==2.5.0 ; python_version >= "3.8" and python_version < "4.0"
pygments==2.13.0 ; python_version >= "3.8" and python_version < "4.0"
pyparsing==3.0.9 ; python_version >= "3.8" and python_version < "4.0"
pytest-clarity==1.0.1 ; python_version >= "3.8" and python_version < "4.0"
pytest==7.1.3 ; python_version >= "3.8" and python_version < "4.0"
python-dateutil==2.8.2 ; python_version >= "3.8" and python_version < "4.0"
python-slugify==6.1.2 ; python_version >= "3.8" and python_version < "4.0"
python-stdnum==1.17 ; python_version >= "3.8" and python_version < "4.0"
pytimeparse==1.1.8 ; python_version >= "3.8" and python_version < "4.0"
pytz==2022.2.1 ; python_version >= "3.8" and python_version < "4.0"
requests-cache==0.9.6 ; python_version >= "3.8" and python_version < "4.0"
requests==2.28.1 ; python_version >= "3.8" and python_version < "4"
rich==12.5.1 ; python_version >= "3.8" and python_version < "4.0"
setuptools==65.3.0 ; python_version >= "3.8" and python_version < "4"
six==1.16.0 ; python_version >= "3.8" and python_version < "4.0"
spdx-license-list==0.5.2 ; python_version >= "3.8" and python_version < "4.0"
sqlalchemy==1.4.40 ; python_version >= "3.8" and python_version < "4.0"
text-unidecode==1.3 ; python_version >= "3.8" and python_version < "4.0"
tomli==2.0.1 ; python_version >= "3.8" and python_version < "4.0"
typing-extensions==4.3.0 ; python_version >= "3.8" and python_version < "3.10"
url-normalize==1.4.3 ; python_version >= "3.8" and python_version < "4.0"
urllib3==1.26.12 ; python_version >= "3.8" and python_version < "4"
wcwidth==0.2.5 ; python_version >= "3.8" and python_version < "4"
xlrd==2.0.1 ; python_version >= "3.8" and python_version < "4.0"

View File

@ -1,15 +1,25 @@
-i https://pypi.org/simple
certifi==2019.6.16
chardet==3.0.4
idna==2.8
numpy==1.17.0
pandas==0.25.0
pycountry==19.7.15
python-dateutil==2.8.0
python-stdnum==1.11
pytz==2019.1
requests-cache==0.5.0
requests==2.22.0
six==1.12.0
urllib3==1.25.3
xlrd==1.2.0
appdirs==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
attrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
cattrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
certifi==2022.6.15 ; python_version >= "3.8" and python_version < "4"
charset-normalizer==2.1.1 ; python_version >= "3.8" and python_version < "4"
colorama==0.4.5 ; python_version >= "3.8" and python_version < "4.0"
country-converter==0.7.7 ; python_version >= "3.8" and python_version < "4.0"
exceptiongroup==1.0.0rc9 ; python_version >= "3.8" and python_version <= "3.10"
ftfy==6.1.1 ; python_version >= "3.8" and python_version < "4"
idna==3.3 ; python_version >= "3.8" and python_version < "4"
langid==1.1.6 ; python_version >= "3.8" and python_version < "4.0"
numpy==1.23.2 ; python_version < "4.0" and python_version >= "3.8"
pandas==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
pycountry==22.3.5 ; python_version >= "3.8" and python_version < "4"
python-dateutil==2.8.2 ; python_version >= "3.8" and python_version < "4.0"
python-stdnum==1.17 ; python_version >= "3.8" and python_version < "4.0"
pytz==2022.2.1 ; python_version >= "3.8" and python_version < "4.0"
requests-cache==0.9.6 ; python_version >= "3.8" and python_version < "4.0"
requests==2.28.1 ; python_version >= "3.8" and python_version < "4"
setuptools==65.3.0 ; python_version >= "3.8" and python_version < "4"
six==1.16.0 ; python_version >= "3.8" and python_version < "4.0"
spdx-license-list==0.5.2 ; python_version >= "3.8" and python_version < "4.0"
url-normalize==1.4.3 ; python_version >= "3.8" and python_version < "4.0"
urllib3==1.26.12 ; python_version >= "3.8" and python_version < "4"
wcwidth==0.2.5 ; python_version >= "3.8" and python_version < "4"

6
setup.cfg Normal file
View File

@ -0,0 +1,6 @@
[isort]
multi_line_output=3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
line_length=88

View File

@ -4,16 +4,17 @@ with open("README.md", "r") as fh:
long_description = fh.read()
install_requires = [
'pandas',
'python-stdnum',
'requests',
'requests-cache',
'pycountry'
"pandas",
"python-stdnum",
"requests",
"requests-cache",
"pycountry",
"langid",
]
setuptools.setup(
name="csv-metadata-quality",
version="0.1.0",
version="0.6.0",
author="Alan Orth",
author_email="aorth@mjanja.ch",
description="A simple, but opinionated CSV quality checking and fixing pipeline for CSVs in the DSpace ecosystem.",
@ -22,17 +23,15 @@ setuptools.setup(
long_description_content_type="text/markdown",
url="https://github.com/alanorth/csv-metadata-quality",
classifiers=[
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Operating System :: OS Independent",
"Development Status :: 4 - Beta"
],
packages=['csv_metadata_quality'],
packages=["csv_metadata_quality"],
entry_points={
'console_scripts': [
'csv-metadata-quality = csv_metadata_quality.__main__:main'
]
"console_scripts": ["csv-metadata-quality = csv_metadata_quality.__main__:main"]
},
install_requires=install_requires
install_requires=install_requires,
)

View File

@ -1,194 +1,514 @@
# SPDX-License-Identifier: GPL-3.0-only
import pandas as pd
from colorama import Fore
import csv_metadata_quality.check as check
import csv_metadata_quality.experimental as experimental
def test_check_invalid_issn(capsys):
'''Test checking invalid ISSN.'''
"""Test checking invalid ISSN."""
value = '2321-2302'
value = "2321-2302"
check.issn(value)
captured = capsys.readouterr()
assert captured.out == f'Invalid ISSN: {value}\n'
assert captured.out == f"{Fore.RED}Invalid ISSN: {Fore.RESET}{value}\n"
def test_check_valid_issn():
'''Test checking valid ISSN.'''
"""Test checking valid ISSN."""
value = '0024-9319'
value = "0024-9319"
result = check.issn(value)
assert result == value
assert result == None
def test_check_invalid_isbn(capsys):
'''Test checking invalid ISBN.'''
"""Test checking invalid ISBN."""
value = '99921-58-10-6'
value = "99921-58-10-6"
check.isbn(value)
captured = capsys.readouterr()
assert captured.out == f'Invalid ISBN: {value}\n'
assert captured.out == f"{Fore.RED}Invalid ISBN: {Fore.RESET}{value}\n"
def test_check_valid_isbn():
'''Test checking valid ISBN.'''
"""Test checking valid ISBN."""
value = '99921-58-10-7'
value = "99921-58-10-7"
result = check.isbn(value)
assert result == value
def test_check_invalid_separators(capsys):
'''Test checking invalid multi-value separators.'''
value = 'Alan|Orth'
check.separators(value)
captured = capsys.readouterr()
assert captured.out == f'Invalid multi-value separator: {value}\n'
def test_check_valid_separators():
'''Test checking valid multi-value separators.'''
value = 'Alan||Orth'
result = check.separators(value)
assert result == value
assert result == None
def test_check_missing_date(capsys):
'''Test checking missing date.'''
"""Test checking missing date."""
value = None
check.date(value)
field_name = "dc.date.issued"
check.date(value, field_name)
captured = capsys.readouterr()
assert captured.out == f'Missing date.\n'
assert captured.out == f"{Fore.RED}Missing date ({field_name}).{Fore.RESET}\n"
def test_check_multiple_dates(capsys):
'''Test checking multiple dates.'''
"""Test checking multiple dates."""
value = '1990||1991'
value = "1990||1991"
check.date(value)
field_name = "dc.date.issued"
check.date(value, field_name)
captured = capsys.readouterr()
assert captured.out == f'Multiple dates not allowed: {value}\n'
assert (
captured.out
== f"{Fore.RED}Multiple dates not allowed ({field_name}): {Fore.RESET}{value}\n"
)
def test_check_invalid_date(capsys):
'''Test checking invalid ISO8601 date.'''
"""Test checking invalid ISO8601 date."""
value = '1990-0'
value = "1990-0"
check.date(value)
field_name = "dc.date.issued"
check.date(value, field_name)
captured = capsys.readouterr()
assert captured.out == f'Invalid date: {value}\n'
assert (
captured.out == f"{Fore.RED}Invalid date ({field_name}): {Fore.RESET}{value}\n"
)
def test_check_valid_date():
'''Test checking valid ISO8601 date.'''
"""Test checking valid ISO8601 date."""
value = '1990'
value = "1990"
result = check.date(value)
field_name = "dc.date.issued"
assert result == value
result = check.date(value, field_name)
assert result == None
def test_check_suspicious_characters(capsys):
'''Test checking for suspicious characters.'''
"""Test checking for suspicious characters."""
value = 'foreˆt'
value = "foreˆt"
check.suspicious_characters(value)
field_name = "dc.contributor.author"
check.suspicious_characters(value, field_name)
captured = capsys.readouterr()
assert captured.out == f'Suspicious character: {value}\n'
assert (
captured.out
== f"{Fore.YELLOW}Suspicious character ({field_name}): {Fore.RESET}ˆt\n"
)
def test_check_valid_iso639_2_language():
'''Test valid ISO 639-2 language.'''
def test_check_valid_iso639_1_language():
"""Test valid ISO 639-1 (alpha 2) language."""
value = 'ja'
value = "ja"
result = check.language(value)
assert result == value
assert result == None
def test_check_valid_iso639_3_language():
'''Test invalid ISO 639-3 language.'''
"""Test valid ISO 639-3 (alpha 3) language."""
value = 'eng'
value = "eng"
result = check.language(value)
assert result == value
assert result == None
def test_check_invalid_iso639_2_language(capsys):
'''Test invalid ISO 639-2 language.'''
def test_check_invalid_iso639_1_language(capsys):
"""Test invalid ISO 639-1 (alpha 2) language."""
value = 'jp'
value = "jp"
check.language(value)
captured = capsys.readouterr()
assert captured.out == f'Invalid ISO 639-2 language: {value}\n'
assert (
captured.out == f"{Fore.RED}Invalid ISO 639-1 language: {Fore.RESET}{value}\n"
)
def test_check_invalid_iso639_3_language(capsys):
'''Test invalid ISO 639-3 language.'''
"""Test invalid ISO 639-3 (alpha 3) language."""
value = 'chi'
value = "chi"
check.language(value)
captured = capsys.readouterr()
assert captured.out == f'Invalid ISO 639-3 language: {value}\n'
assert (
captured.out == f"{Fore.RED}Invalid ISO 639-3 language: {Fore.RESET}{value}\n"
)
def test_check_invalid_language(capsys):
'''Test invalid language.'''
"""Test invalid language."""
value = 'Span'
value = "Span"
check.language(value)
captured = capsys.readouterr()
assert captured.out == f'Invalid language: {value}\n'
assert captured.out == f"{Fore.RED}Invalid language: {Fore.RESET}{value}\n"
def test_check_invalid_agrovoc(capsys):
'''Test invalid AGROVOC subject.'''
"""Test invalid AGROVOC subject. Invalid values *will not* be dropped."""
value = 'FOREST'
field_name = 'dc.subject'
valid_agrovoc = "LIVESTOCK"
invalid_agrovoc = "FOREST"
value = f"{valid_agrovoc}||{invalid_agrovoc}"
field_name = "dcterms.subject"
drop = False
check.agrovoc(value, field_name)
new_value = check.agrovoc(value, field_name, drop)
captured = capsys.readouterr()
assert captured.out == f'Invalid AGROVOC ({field_name}): {value}\n'
assert (
captured.out
== f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{invalid_agrovoc}\n"
)
assert new_value == value
def test_check_invalid_agrovoc_dropped(capsys):
"""Test invalid AGROVOC subjects. Invalid values *will* be dropped."""
valid_agrovoc = "LIVESTOCK"
invalid_agrovoc = "FOREST"
value = f"{valid_agrovoc}||{invalid_agrovoc}"
field_name = "dcterms.subject"
drop = True
new_value = check.agrovoc(value, field_name, drop)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.GREEN}Dropping invalid AGROVOC ({field_name}): {Fore.RESET}{invalid_agrovoc}\n"
)
assert new_value == valid_agrovoc
def test_check_valid_agrovoc():
'''Test valid AGROVOC subject.'''
"""Test valid AGROVOC subject."""
value = 'FORESTS'
field_name = 'dc.subject'
value = "FORESTS"
field_name = "dcterms.subject"
drop = False
result = check.agrovoc(value, field_name)
result = check.agrovoc(value, field_name, drop)
assert result == value
assert result == "FORESTS"
def test_check_uncommon_filename_extension(capsys):
"""Test uncommon filename extension."""
value = "file.pdf.lck"
check.filename_extension(value)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Filename with uncommon extension: {Fore.RESET}{value}\n"
)
def test_check_common_filename_extension():
"""Test common filename extension."""
value = "file.pdf"
result = check.filename_extension(value)
assert result == None
def test_check_incorrect_iso_639_1_language(capsys):
"""Test incorrect ISO 639-1 language, as determined by comparing the item's language field with the actual language predicted in the item's title."""
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "es"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
experimental.correct_language(series, exclude)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Possibly incorrect language {language} (detected en): {Fore.RESET}{title}\n"
)
def test_check_incorrect_iso_639_3_language(capsys):
"""Test incorrect ISO 639-3 language, as determined by comparing the item's language field with the actual language predicted in the item's title."""
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "spa"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
experimental.correct_language(series, exclude)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Possibly incorrect language {language} (detected eng): {Fore.RESET}{title}\n"
)
def test_check_correct_iso_639_1_language():
"""Test correct ISO 639-1 language, as determined by comparing the item's language field with the actual language predicted in the item's title."""
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "en"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
result = experimental.correct_language(series, exclude)
assert result == None
def test_check_correct_iso_639_3_language():
"""Test correct ISO 639-3 language, as determined by comparing the item's language field with the actual language predicted in the item's title."""
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "eng"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
result = experimental.correct_language(series, exclude)
assert result == None
def test_check_valid_spdx_license_identifier():
"""Test valid SPDX license identifier."""
license = "CC-BY-SA-4.0"
result = check.spdx_license_identifier(license)
assert result == None
def test_check_invalid_spdx_license_identifier(capsys):
"""Test invalid SPDX license identifier."""
license = "CC-BY-SA"
result = check.spdx_license_identifier(license)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Non-SPDX license identifier: {Fore.RESET}{license}\n"
)
def test_check_duplicate_item(capsys):
"""Test item with duplicate title, type, and date."""
item_title = "Title"
item_type = "Report"
item_date = "2021-03-17"
d = {
"dc.title": [item_title, item_title],
"dcterms.type": [item_type, item_type],
"dcterms.issued": [item_date, item_date],
}
df = pd.DataFrame(data=d)
result = check.duplicate_items(df)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Possible duplicate (dc.title): {Fore.RESET}{item_title}\n"
)
def test_check_no_mojibake():
"""Test string with no mojibake."""
field = "CIAT Publicaçao"
field_name = "dcterms.isPartOf"
result = check.mojibake(field, field_name)
assert result == None
def test_check_mojibake(capsys):
"""Test string with mojibake."""
field = "CIAT Publicaçao"
field_name = "dcterms.isPartOf"
result = check.mojibake(field, field_name)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Possible encoding issue ({field_name}): {Fore.RESET}{field}\n"
)
def test_check_doi_field():
"""Test an item with a DOI field."""
doi = "https://doi.org/10.1186/1743-422X-9-218"
citation = "Orth, A. 2021. Testing all the things. doi: 10.1186/1743-422X-9-218"
# Emulate a column in a transposed dataframe (which is just a series), with
# the citation and a DOI field.
d = {"cg.identifier.doi": doi, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
exclude = list()
result = check.citation_doi(series, exclude)
assert result == None
def test_check_doi_only_in_citation(capsys):
"""Test an item with a DOI in its citation, but no DOI field."""
citation = "Orth, A. 2021. Testing all the things. doi: 10.1186/1743-422X-9-218"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series), with
# an empty DOI field and a citation containing a DOI.
d = {"cg.identifier.doi": None, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
check.citation_doi(series, exclude)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}DOI in citation, but missing a DOI field: {Fore.RESET}{citation}\n"
)
def test_title_in_citation():
"""Test an item with its title in the citation."""
title = "Testing all the things"
citation = "Orth, A. 2021. Testing all the things."
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series), with
# the title and citation.
d = {"dc.title": title, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
result = check.title_in_citation(series, exclude)
assert result == None
def test_title_not_in_citation(capsys):
"""Test an item with its title missing from the citation."""
title = "Testing all the things"
citation = "Orth, A. 2021. Testing all teh things."
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series), with
# the title and citation.
d = {"dc.title": title, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
check.title_in_citation(series, exclude)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Title is not present in citation: {Fore.RESET}{title}\n"
)
def test_country_matches_region():
"""Test an item with regions matching its country list."""
country = "Kenya"
region = "Eastern Africa"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series)
d = {"cg.coverage.country": country, "cg.coverage.region": region}
series = pd.Series(data=d)
result = check.countries_match_regions(series, exclude)
assert result == None
def test_country_not_matching_region(capsys):
"""Test an item with regions not matching its country list."""
title = "Testing an item with no matching region."
country = "Kenya"
region = ""
missing_region = "Eastern Africa"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series)
d = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": region,
}
series = pd.Series(data=d)
check.countries_match_regions(series, exclude)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Missing region ({missing_region}): {Fore.RESET}{title}\n"
)

View File

@ -1,58 +1,154 @@
# SPDX-License-Identifier: GPL-3.0-only
import pandas as pd
import csv_metadata_quality.fix as fix
def test_fix_leading_whitespace():
'''Test fixing leading whitespace.'''
"""Test fixing leading whitespace."""
value = ' Alan'
value = " Alan"
assert fix.whitespace(value) == 'Alan'
field_name = "dc.contributor.author"
assert fix.whitespace(value, field_name) == "Alan"
def test_fix_trailing_whitespace():
'''Test fixing trailing whitespace.'''
"""Test fixing trailing whitespace."""
value = 'Alan '
value = "Alan "
assert fix.whitespace(value) == 'Alan'
field_name = "dc.contributor.author"
assert fix.whitespace(value, field_name) == "Alan"
def test_fix_excessive_whitespace():
'''Test fixing excessive whitespace.'''
"""Test fixing excessive whitespace."""
value = 'Alan Orth'
value = "Alan Orth"
assert fix.whitespace(value) == 'Alan Orth'
field_name = "dc.contributor.author"
assert fix.whitespace(value, field_name) == "Alan Orth"
def test_fix_invalid_separators():
'''Test fixing invalid multi-value separators.'''
"""Test fixing invalid multi-value separators."""
value = 'Alan|Orth'
value = "Alan|Orth"
assert fix.separators(value) == 'Alan||Orth'
field_name = "dc.contributor.author"
assert fix.separators(value, field_name) == "Alan||Orth"
def test_fix_unnecessary_separators():
"""Test fixing unnecessary multi-value separators."""
field = "Alan||Orth||"
field_name = "dc.contributor.author"
assert fix.separators(field, field_name) == "Alan||Orth"
def test_fix_unnecessary_unicode():
'''Test fixing unnecessary Unicode.'''
"""Test fixing unnecessary Unicode."""
value = 'Alan Orth'
value = "Alan Orth"
assert fix.unnecessary_unicode(value) == 'Alan Orth'
assert fix.unnecessary_unicode(value) == "Alan Orth"
def test_fix_duplicates():
'''Test fixing duplicate metadata values.'''
"""Test fixing duplicate metadata values."""
value = 'Kenya||Kenya'
value = "Kenya||Kenya"
assert fix.duplicates(value) == 'Kenya'
field_name = "dc.contributor.author"
assert fix.duplicates(value, field_name) == "Kenya"
def test_fix_newlines():
'''Test fixing newlines.'''
"""Test fixing newlines."""
value = '''Ken
ya'''
value = """Ken
ya"""
field_name = "dcterms.subject"
assert fix.newlines(value) == 'Kenya'
assert fix.newlines(value, field_name) == "Kenya"
def test_fix_comma_space():
"""Test adding space after comma."""
value = "Orth,Alan S."
field_name = "dc.contributor.author"
assert fix.comma_space(value, field_name) == "Orth, Alan S."
def test_fix_normalized_unicode():
"""Test fixing a string that is already in its normalized (NFC) Unicode form."""
# string using the normalized canonical form of é
value = "Ouédraogo, Mathieu"
field_name = "dc.contributor.author"
assert fix.normalize_unicode(value, field_name) == "Ouédraogo, Mathieu"
def test_fix_decomposed_unicode():
"""Test fixing a string that contains Unicode string."""
# string using the decomposed form of é
value = "Ouédraogo, Mathieu"
field_name = "dc.contributor.author"
assert fix.normalize_unicode(value, field_name) == "Ouédraogo, Mathieu"
def test_fix_mojibake():
"""Test string with no mojibake."""
field = "CIAT Publicaçao"
field_name = "dcterms.isPartOf"
assert fix.mojibake(field, field_name) == "CIAT Publicaçao"
def test_fix_country_not_matching_region():
"""Test an item with regions not matching its country list."""
title = "Testing an item with no matching region."
country = "Kenya"
region = ""
missing_region = "Eastern Africa"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series)
d = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": region,
}
series = pd.Series(data=d)
result = fix.countries_match_regions(series, exclude)
# Emulate the correct series we are expecting
d_correct = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": missing_region,
}
series_correct = pd.Series(data=d_correct)
pd.testing.assert_series_equal(result, series_correct)