mirror of
https://github.com/ilri/csv-metadata-quality.git
synced 2025-01-24 11:13:22 +01:00
Add checks and unsafe fixes for mojibake
This detects whether text has likely been encoded in one encoding and decoded in another, perhaps multiple times. This often results in display of "mojibake" characters. For example, a file encoded in UTF-8 is opened as CP-1252 (Windows Latin codepage) in Microsoft Excel, and saved again as UTF-8. You will see strings like this in the resulting file: - CIAT Publicaçao - CIAT Publicación The correct version of these in UTF-8 would be: - CIAT Publicaçao - CIAT Publicación I use a code snippet from Martijn Pieters on StackOverflow to de- tect whether a string is "weird" as determined by the excellent "fixes text for you" (ftfy) Python library, then check if a weird string encodes as CP-1252 or not. If so, I can try to fix it. See: https://stackoverflow.com/questions/29071995/identify-garbage-unicode-string-using-python
This commit is contained in:
parent
e92ec5d371
commit
898bb412c3
@ -107,6 +107,13 @@ def run(argv):
|
||||
# Check: suspicious characters
|
||||
df[column].apply(check.suspicious_characters, field_name=column)
|
||||
|
||||
# Check: mojibake
|
||||
df[column].apply(check.mojibake, field_name=column)
|
||||
|
||||
# Fix: mojibake
|
||||
if args.unsafe_fixes:
|
||||
df[column] = df[column].apply(fix.mojibake, field_name=column)
|
||||
|
||||
# Fix: invalid and unnecessary multi-value separators
|
||||
df[column] = df[column].apply(fix.separators, field_name=column)
|
||||
# Run whitespace fix again after fixing invalid separators
|
||||
|
@ -11,6 +11,8 @@ from pycountry import languages
|
||||
from stdnum import isbn as stdnum_isbn
|
||||
from stdnum import issn as stdnum_issn
|
||||
|
||||
from csv_metadata_quality.util import is_mojibake
|
||||
|
||||
|
||||
def issn(field):
|
||||
"""Check if an ISSN is valid.
|
||||
@ -345,3 +347,22 @@ def duplicate_items(df):
|
||||
)
|
||||
else:
|
||||
items.append(item_title_type_date)
|
||||
|
||||
|
||||
def mojibake(field, field_name):
|
||||
"""Check for mojibake (text that was encoded in one encoding and decoded in
|
||||
in another, perhaps multiple times). See util.py.
|
||||
|
||||
Prints the string if it contains suspected mojibake.
|
||||
"""
|
||||
|
||||
# Skip fields with missing values
|
||||
if pd.isna(field):
|
||||
return
|
||||
|
||||
if is_mojibake(field):
|
||||
print(
|
||||
f"{Fore.YELLOW}Possible encoding issue ({field_name}): {Fore.RESET}{field}"
|
||||
)
|
||||
|
||||
return
|
||||
|
@ -3,8 +3,9 @@ from unicodedata import normalize
|
||||
|
||||
import pandas as pd
|
||||
from colorama import Fore
|
||||
from ftfy import fix_text
|
||||
|
||||
from csv_metadata_quality.util import is_nfc
|
||||
from csv_metadata_quality.util import is_mojibake, is_nfc
|
||||
|
||||
|
||||
def whitespace(field, field_name):
|
||||
@ -253,3 +254,22 @@ def normalize_unicode(field, field_name):
|
||||
field = normalize("NFC", field)
|
||||
|
||||
return field
|
||||
|
||||
|
||||
def mojibake(field, field_name):
|
||||
"""Attempts to fix mojibake (text that was encoded in one encoding and deco-
|
||||
ded in another, perhaps multiple times). See util.py.
|
||||
|
||||
Return fixed string.
|
||||
"""
|
||||
|
||||
# Skip fields with missing values
|
||||
if pd.isna(field):
|
||||
return field
|
||||
|
||||
if is_mojibake(field):
|
||||
print(f"{Fore.GREEN}Fixing encoding issue ({field_name}): {Fore.RESET}{field}")
|
||||
|
||||
return fix_text(field)
|
||||
else:
|
||||
return field
|
||||
|
@ -1,3 +1,6 @@
|
||||
from ftfy.badness import sequence_weirdness
|
||||
|
||||
|
||||
def is_nfc(field):
|
||||
"""Utility function to check whether a string is using normalized Unicode.
|
||||
Python's built-in unicodedata library has the is_normalized() function, but
|
||||
@ -12,3 +15,35 @@ def is_nfc(field):
|
||||
from unicodedata import normalize
|
||||
|
||||
return field == normalize("NFC", field)
|
||||
|
||||
|
||||
def is_mojibake(field):
|
||||
"""Determines whether a string contains mojibake.
|
||||
|
||||
We commonly deal with CSV files that were *encoded* in UTF-8, but decoded
|
||||
as something else like CP-1252 (Windows Latin). This manifests in the form
|
||||
of "mojibake", for example:
|
||||
|
||||
- CIAT Publicaçao
|
||||
- CIAT Publicación
|
||||
|
||||
This uses the excellent "fixes text for you" (ftfy) library to determine
|
||||
whether a string contains characters that have been encoded in one encoding
|
||||
and decoded in another.
|
||||
|
||||
Inspired by this code snippet from Martijn Pieters on StackOverflow:
|
||||
https://stackoverflow.com/questions/29071995/identify-garbage-unicode-string-using-python
|
||||
|
||||
Return boolean.
|
||||
"""
|
||||
if not sequence_weirdness(field):
|
||||
# Nothing weird, should be okay
|
||||
return False
|
||||
try:
|
||||
field.encode("sloppy-windows-1252")
|
||||
except UnicodeEncodeError:
|
||||
# Not CP-1252 encodable, probably fine
|
||||
return False
|
||||
else:
|
||||
# Encodable as CP-1252, Mojibake alert level high
|
||||
return True
|
||||
|
@ -21,6 +21,7 @@ pycountry = "^19.8.18"
|
||||
langid = "^1.1.6"
|
||||
colorama = "^0.4.4"
|
||||
spdx-license-list = "^0.5.2"
|
||||
ftfy = "^5.9"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
pytest = "^6.1.1"
|
||||
|
Loading…
x
Reference in New Issue
Block a user