1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2025-05-09 22:56:01 +02:00

60 Commits

Author SHA1 Message Date
58b7b6e9d8 Version 0.6.0
All checks were successful
continuous-integration/drone/push Build is passing
2022-09-02 16:35:58 +03:00
ffdf1eca7b setup.py: remove Python 3.7 support
I had already set the minimum to Python 3.8 elsewhere, but forgot
to do it here. I am not sure if Python 3.7 will still work here or
not so let's just keep it in sync with the other docs.
2022-09-02 16:34:16 +03:00
59742e47f1 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --with dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==
2022-09-02 16:32:04 +03:00
9c741b1d49 poetry.lock: sync latest deps 2022-09-02 16:31:19 +03:00
21e9948a75 pyproject.toml: manually updated all deps
Update all deps to their latest versions on pypi.org and remove the
explicit dependency on SQLAlchemy.
2022-09-02 16:30:40 +03:00
f64435fc9d tests/test_check.py: add missing excludes 2022-09-02 16:24:33 +03:00
566c2b45cf Remove Excel support
I never used this and it seems xlrd doesn't even support .xlsx any-
more anyways. If this was needed I could theoretically use openpyxl
but I'd rather just stick to CSV.
2022-09-02 16:14:24 +03:00
41b813be6e CHANGELOG.md: add not about exclude logic 2022-09-02 16:03:51 +03:00
040e56fc76 Improve exclude function
When a user explicitly requests that a field be excluded with -x we
skip that field in most checks. Up until now that did not include
the item-based checks using a transposed dataframe because we don't
know the metadata field names (labels) until we iterate over them.

Now the excludes are respected for item-based checks.
2022-09-02 15:59:22 +03:00
1f76247353 csv_metadata_quality/app.py: rework exclude/skip
Instead of processing the excludes inside the for column loop we do
it once before and then only need to check if the current column is
in the list.
2022-09-02 10:35:04 +03:00
2e489fc921 Add new data/test-geography.csv test file
All checks were successful
continuous-integration/drone/push Build is passing
This file has metadata to test different scenarios related to chec-
king and fixing missing regions.
2022-09-01 16:57:29 +03:00
117c6ca85d csv_metadata_quality/check.py: missing region fixes
Port over the recent fixes and logic improvements to regions from
fix.py.
2022-09-01 16:38:35 +03:00
f49214fa2e csv_metadata_quality/fix.py: fix bug in regions
We need to make sure we're only manipulating the regions if we have
any missing. The previous code was always manipulating the existing
row, even when there were no missing regions, which resulted in new
values like "Eastern Africa||".
2022-09-01 16:15:32 +03:00
7ce20726d0 csv_metadata_quality/fix.py: minor change
Print missing regions when we know they are missing, instead of do-
ing another check later and looping over them again.
2022-09-01 16:03:49 +03:00
473be5ac2f csv_metadata_quality/fix.py: don't add "not found" region
country_converter returns the literal "not found" string if a coun-
try cannot be found. In that case we do not want to consider that as
a region!
2022-09-01 15:46:21 +03:00
7c61cae417 csv_metadata_quality/fix.py: silence warning
By default country_converter prints "not found in regex" if a coun-
try is not found. We can silence this by switching the logging lev-
el to something above WARNING.
2022-09-01 15:44:50 +03:00
ae16289637 csv_metadata_quality/fix.py: Minor change
The country_converter documentation says we should instantiate the
CountryConverter() class once instead of calling coco.convert() in
each iteration of the loop so we don't end up loading the data file
more than once.
2022-09-01 15:40:45 +03:00
fdb7900cd0 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --with dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==
2022-09-01 11:21:10 +03:00
9c65569c43 poetry.lock: run poetry update 2022-09-01 08:44:12 +03:00
0cf0bc97f0 csv_metadata_quality/fix.py: fix logic error again
All checks were successful
continuous-integration/drone/push Build is passing
It seems there was another logic error raised by the test in pytest.
With my real data, it was enough to check if the region column was
None, but with my test I was explicitly setting the region to "" (an
empty string). So to be really sure we should check if the string
is not None *and* if its length is greater than 0.
2022-08-03 20:51:14 +03:00
40c3585bab csv_metadata_quality/fix.py: fix logic error
Fix string concatenation with existing regions.
2022-08-03 18:26:08 +03:00
b9c44aed7d csv_metadata_quality/fix.py: fix logic issue
All checks were successful
continuous-integration/drone/push Build is passing
Forgot to return the row as-is if we don't find any countries.
2022-08-02 10:17:30 +03:00
032a1db392 README.md: Add note about missing regions
All checks were successful
continuous-integration/drone/push Build is passing
2022-07-28 16:58:01 +03:00
da87531779 CHANGELOG.md: Add note about adding missing regions 2022-07-28 16:54:05 +03:00
689ee184f7 Add unsafe check to add missing regions 2022-07-28 16:52:43 +03:00
344993370c Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2022-07-08 15:50:42 +03:00
00b4dca185 poetry.lock: run poetry update 2022-07-08 15:50:03 +03:00
5a87bf4317 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2022-03-21 14:37:38 +03:00
c706719d8b poetry.lock: run poetry update 2022-03-21 14:37:03 +03:00
e7ea8ef9f0 README.md: add note about spdx-license-list
All checks were successful
continuous-integration/drone/push Build is passing
This Python module was deprecated in favor of using the SPDX license
data directly.

See: https://github.com/spdx/license-list-data
2022-01-30 13:27:20 +03:00
ea050376fc Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2022-01-30 13:26:37 +03:00
4ba615cd41 poetry.lock: run poetry update 2022-01-30 13:26:04 +03:00
b0d46cd864 pyproject.toml: update black
It's no longer in beta!
2022-01-30 13:22:47 +03:00
3ee9319d84 pyproject.toml: bump flake8 2022-01-30 13:21:09 +03:00
4d5f4b5abb pyproject.toml: update pycountry
Seems to be a few major versions from 19.x.x to 21.x.x. All tests
passing in pytest so it's probably fine.
2022-01-30 13:15:38 +03:00
98d38801fa pyproject.toml: update requests and requests-cache 2022-01-30 13:11:01 +03:00
dad7a8765c .github/workflows/python-app.yml: use Python 3.10
That's what I use for testing locally. Note that we need to quote
the version here because otherwise GitHub Actions will interpret it
as 3.1 due to how YAML works.
2022-01-30 13:06:51 +03:00
d126304534 README.md: update note about Python version 2022-01-30 13:05:36 +03:00
38c2584863 .drone.yml: don't test on Python 3.7 anymore
Pandas 1.4.0 has a minimum Python requirement of 3.8.

See: https://pandas.pydata.org/docs/whatsnew/v1.4.0.html
2022-01-30 13:04:52 +03:00
e94a4539bf pyproject.toml: bump Pandas to v1.4.0
As of Pandas v1.4.0 the minimum Python version is 3.8.

See: https://pandas.pydata.org/docs/whatsnew/v1.4.0.html
2022-01-30 13:03:56 +03:00
a589d39e38 poetry.lock: run poetry lock 2022-01-29 16:26:16 +03:00
d9e427a80e pyproject.toml: don't install ipython
It always complains about running in a virtual environment anyways,
and I can use the one from the OS instead.
2022-01-29 16:25:58 +03:00
8ee5e2e306 setup.py: denote that Python 3.10 works
All checks were successful
continuous-integration/drone/push Build is passing
I have been using Python 3.10 for months, and already added it to
the CI builds.
2022-01-29 16:08:01 +03:00
490701f244 Run more CLI tests in CI
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-24 14:47:25 +02:00
e1b270cf83 CHANGELOG.md: add note about dropping invalid AGROVOC values
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-23 12:47:42 +02:00
b7efe2de40 data/test.csv: update invalid AGROVOC entry
Now that we can drop invalid AGROVOC values we should have a valid
value and an invalid value here. Depending on how the checker is
invoked we will either print a warning or drop the invalid value.
2021-12-23 12:45:38 +02:00
c43095139a tests/test_check.py: add tests for dropping invalid AGROVOC 2021-12-23 12:44:32 +02:00
a7727b8431 Add support for dropping invalid AGROVOC terms
Requires --agrovoc-fields <field.name> to do the actual validation,
and -d to drop invalid ones.
2021-12-23 12:43:55 +02:00
7763a021c5 csv_metadata_quality/fix.py: sort imports with isort
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-15 23:15:02 +02:00
3c12ef3f66 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-12-15 23:11:44 +02:00
aee2438e94 poetry.lock: run poetry update 2021-12-15 23:10:27 +02:00
a351ba9706 CHANGELOG.md: add notes about ftfy 2021-12-15 22:09:01 +02:00
e4faf114dc csv_metadata_quality/util.py: update for ftfy 6.0
The sequence_weirdness() heuristic is deprecated. Now we should use
is_bad().

See: https://ftfy.readthedocs.io/en/v6.0/heuristic.html
See: https://github.com/rspeer/python-ftfy/blob/master/CHANGELOG.md#version-60-april-2-2021
2021-12-15 21:58:07 +02:00
ff49a80432 csv_metadata_quality/fix.py: configure ftfy
Don't replace smart quotes in ftfy. If our text has them we should
keep them.
2021-12-15 21:51:51 +02:00
8b15154285 pyproject.toml: use ftfy 6.0
Lots of improvements here! Improvements to heuristics and a new way
to configure which fixes get applied.

See: https://github.com/rspeer/python-ftfy/blob/master/CHANGELOG.md#version-60-april-2-2021
2021-12-15 21:48:56 +02:00
5854f8e865 CHANGELOG.md: add note about unnecessary Unicode 2021-12-15 13:56:31 +02:00
e7322efadd csv_metadata_quality/app.py: move unnecessary Unicode fix
We actually want to do this after we try to fix mojibake with ftfy.
These "unnecessary" Unicode characters could actually help ftfy in
some cases because often times they indicate that some character
from another encoding was there before (like an accent, dash, or
smart quote).
2021-12-15 13:53:25 +02:00
95015febbd csv_metadata_quality/fix.py: fix thin spaces
All checks were successful
continuous-integration/drone/push Build is passing
Replace thin spaces with normal spaces. Sometimes I see these get
mis handled on Windows machines and they end up as "?" or so.
2021-12-09 23:22:53 +02:00
cef6c66b30 CHANGELOG.md: start next changes 2021-12-09 23:21:58 +02:00
9905e183ea Bump version to 0.6.0-dev 2021-12-09 23:21:30 +02:00
19 changed files with 933 additions and 1022 deletions

View File

@ -13,7 +13,20 @@ steps:
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
# Basic test
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Basic test with unsafe fixes
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Geography test
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv
# Geography test with unsafe fixes
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv -u
# Test with experimental checks
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d
---
kind: pipeline
@ -30,7 +43,20 @@ steps:
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
# Basic test
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Basic test with unsafe fixes
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Geography test
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv
# Geography test with unsafe fixes
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv -u
# Test with experimental checks
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d
---
kind: pipeline
@ -47,23 +73,19 @@ steps:
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
---
kind: pipeline
type: docker
name: python37
steps:
- name: test
image: python:3.7-slim
commands:
- id
- python -V
- apt update && apt install -y gcc g++ libicu-dev pkg-config
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
# Basic test
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Basic test with unsafe fixes
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Geography test
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv
# Geography test with unsafe fixes
- csv-metadata-quality -i data/test-geography.csv -o /tmp/test.csv -u
# Test with experimental checks
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d
# vim: ts=2 sw=2 et

View File

@ -16,10 +16,10 @@ jobs:
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.9
- name: Set up Python 3.10
uses: actions/setup-python@v2
with:
python-version: 3.9
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
@ -38,4 +38,13 @@ jobs:
- name: Test CLI
run: |
python setup.py install
csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
# Basic test
csv-metadata-quality -i data/test.csv -o /tmp/test.csv
# Test with unsafe fixes
csv-metadata-quality -i data/test.csv -o /tmp/test.csv -u
# Test with experimental checks
csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e
# Test with AGROVOC validation
csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject
# Test with AGROVOC validation (and dropping invalid)
csv-metadata-quality -i data/test.csv -o /tmp/test.csv --agrovoc-fields dcterms.subject -d

View File

@ -4,6 +4,27 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.6.0] = 2022-09-02
### Changed
- Perform fix for "unnecessary" Unicode characters after we try to fix encoding
issues with ftfy
- ftfy heuristics to use `is_bad()` instead of `sequence_weirdness()`
- ftfy `fix_text()` to *not* change “smart quotes” to "ASCII quotes"
### Updated
- Python dependencies
- Metadatata field exclude logic
### Added
- Ability to drop invalid AGROVOC values with `-d` when checking AGROVOC values
with `-a <field.name>`
- Ability to add missing UN M.49 regions when both country and region columns
are present. Enable with `-u` (unsafe fixes) for now.
### Removed
- Support for reading Excel files (both `.xls` and `.xlsx`) as it was completely
untested
## [0.5.0] - 2021-12-08
### Added
- Ability to check for, and fix, "mojibake" characters using [ftfy](https://github.com/LuminosoInsight/python-ftfy)

View File

@ -8,7 +8,7 @@
A simple, but opinionated metadata quality checker and fixer designed to work with CSVs in the DSpace ecosystem (though it could theoretically work on any CSV that uses Dublin Core fields as columns). The implementation is essentially a pipeline of checks and fixes that begins with splitting multi-value fields on the standard DSpace "||" separator, trimming leading/trailing whitespace, and then proceeding to more specialized cases like ISSNs, ISBNs, languages, unnecessary Unicode, AGROVOC terms, etc.
Requires Python 3.7.1 or greater (3.8+ recommended). CSV and Excel support comes from the [Pandas](https://pandas.pydata.org/) library, though your mileage may vary with Excel because this is much less tested.
Requires Python 3.8 or greater. CSV support comes from the [Pandas](https://pandas.pydata.org/) library.
If you use the DSpace CSV metadata quality checker please cite:
@ -28,6 +28,7 @@ If you use the DSpace CSV metadata quality checker please cite:
- Remove unnecessary Unicode like [non-breaking spaces](https://en.wikipedia.org/wiki/Non-breaking_space), [replacement characters](https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character), etc
- Check for "suspicious" characters that indicate encoding or copy/paste issues, for example "foreˆt" should be "forêt"
- Check for "mojibake" characters (and attempt to fix with `--unsafe-fixes`)
- Check for countries with missing regions (and attempt to fix with `--unsafe-fixes`)
- Remove duplicate metadata values
- Check for duplicate items, using the title, type, and date issued as an indicator
@ -70,7 +71,7 @@ While it is *theoretically* possible for a single `|` character to be used legit
This will also remove unnecessary trailing multi-value separators, for example `Kenya||Tanzania||`.
## Unsafe Fixes
You can enable several "unsafe" fixes with the `--unsafe-fixes` option. Currently this will remove newlines, perform Unicode normalization, and attempt to fix "mojibake" characters.
You can enable several "unsafe" fixes with the `--unsafe-fixes` option. Currently this will remove newlines, perform Unicode normalization, attempt to fix "mojibake" characters, and add missing UN M.49 regions.
### Newlines
This is considered "unsafe" because some systems give special importance to vertical space and render it properly. DSpace does not support rendering newlines in its XMLUI and has, at times, suffered from parsing errors that cause the import process to fail if an input file had newlines. The `--unsafe-fixes` option strips Unix line feeds (U+000A).
@ -91,6 +92,9 @@ Read more about [Unicode normalization](https://withblue.ink/2019/03/11/why-you-
Pay special attention to the output of the script as well as the resulting file to make sure no new issues have been introduced. The ideal way to solve these issues is to avoid it in the first place. See [this guide about opening CSVs in UTF-8 format in Excel](https://www.itg.ias.edu/content/how-import-csv-file-uses-utf-8-character-encoding-0).
### Countries With Missing Regions
When an input file has both country and region columns we can check to see if the ISO 3166 country names have matching UN M.49 regions and add them when they are missing.
## AGROVOC Validation
You can enable validation of metadata values in certain fields against the AGROVOC REST API with the `--agrovoc-fields` option. For example, in addition to agricultural subjects, many countries and regions are also present AGROVOC. Enable this validation by specifying a comma-separated list of fields:
@ -133,6 +137,7 @@ This currently uses the [Python langid](https://github.com/saffsd/langid.py) lib
- Warn if item is Open Access, but missing a license
- Warn if item has an ISSN but no journal title
- Update journal titles from ISSN
- Migrate to https://github.com/spdx/license-list-data
## License
This work is licensed under the [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).

View File

@ -21,6 +21,12 @@ def parse_args(argv):
"-a",
help="Comma-separated list of fields to validate against AGROVOC, for example: dcterms.subject,cg.coverage.country",
)
parser.add_argument(
"--drop-invalid-agrovoc",
"-d",
help="After validating metadata values against AGROVOC, drop invalid values.",
action="store_true",
)
parser.add_argument(
"--experimental-checks",
"-e",
@ -30,7 +36,7 @@ def parse_args(argv):
parser.add_argument(
"--input-file",
"-i",
help="Path to input file. Can be UTF-8 CSV or Excel XLSX.",
help="Path to input file. Must be a UTF-8 CSV.",
required=True,
type=argparse.FileType("r", encoding="UTF-8"),
)
@ -70,19 +76,19 @@ def run(argv):
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
df = pd.read_csv(args.input_file, dtype=str)
for column in df.columns:
# Check if the user requested to skip any fields
if args.exclude_fields:
skip = False
# Split the list of excludes on ',' so we can test exact matches
# rather than fuzzy matches with regexes or "if word in string"
for exclude in args.exclude_fields.split(","):
if column == exclude and skip is False:
skip = True
if skip:
print(f"{Fore.YELLOW}Skipping {Fore.RESET}{column}")
# Check if the user requested to skip any fields
if args.exclude_fields:
# Split the list of excluded fields on ',' into a list. Note that the
# user should be careful to no include spaces here.
exclude = args.exclude_fields.split(",")
else:
exclude = list()
continue
for column in df.columns:
if column in exclude:
print(f"{Fore.YELLOW}Skipping {Fore.RESET}{column}")
continue
# Fix: whitespace
df[column] = df[column].apply(fix.whitespace, field_name=column)
@ -103,9 +109,6 @@ def run(argv):
if args.unsafe_fixes:
df[column] = df[column].apply(fix.normalize_unicode, field_name=column)
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Check: suspicious characters
df[column].apply(check.suspicious_characters, field_name=column)
@ -115,6 +118,9 @@ def run(argv):
else:
df[column].apply(check.mojibake, field_name=column)
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Fix: invalid and unnecessary multi-value separators
df[column] = df[column].apply(fix.separators, field_name=column)
# Run whitespace fix again after fixing invalid separators
@ -123,12 +129,14 @@ def run(argv):
# Fix: duplicate metadata values
df[column] = df[column].apply(fix.duplicates, field_name=column)
# Check: invalid AGROVOC subject
# Check: invalid AGROVOC subject and optionally drop them
if args.agrovoc_fields:
# Identify fields the user wants to validate against AGROVOC
for field in args.agrovoc_fields.split(","):
if column == field:
df[column].apply(check.agrovoc, field_name=column)
df[column] = df[column].apply(
check.agrovoc, field_name=column, drop=args.drop_invalid_agrovoc
)
# Check: invalid language
match = re.match(r"^.*?language.*$", column)
@ -192,19 +200,30 @@ def run(argv):
# should rename column in this for loop...
for column in df_transposed.columns:
# Check: citation DOI
check.citation_doi(df_transposed[column])
check.citation_doi(df_transposed[column], exclude)
# Check: title in citation
check.title_in_citation(df_transposed[column])
check.title_in_citation(df_transposed[column], exclude)
# Check: countries match regions
check.countries_match_regions(df_transposed[column])
if args.unsafe_fixes:
# Fix: countries match regions
df_transposed[column] = fix.countries_match_regions(
df_transposed[column], exclude
)
else:
# Check: countries match regions
check.countries_match_regions(df_transposed[column], exclude)
if args.experimental_checks:
experimental.correct_language(df_transposed[column])
experimental.correct_language(df_transposed[column], exclude)
# Transpose the DataFrame back before writing. This is probably wasteful to
# do every time since we technically only need to do it if we've done the
# countries/regions fix above, but I can't think of another way for now.
df_transposed_back = df_transposed.T
# Write
df.to_csv(args.output_file, index=False)
df_transposed_back.to_csv(args.output_file, index=False)
# Close the input and output files before exiting
args.input_file.close()

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: GPL-3.0-only
import logging
import os
import re
from datetime import datetime, timedelta
@ -188,7 +189,7 @@ def language(field):
return
def agrovoc(field, field_name):
def agrovoc(field, field_name, drop):
"""Check subject terms against AGROVOC REST API.
Function constructor expects the field as well as the field name because
@ -217,7 +218,10 @@ def agrovoc(field, field_name):
)
# prune old cache entries
requests_cache.remove_expired_responses()
# requests_cache.remove_expired_responses()
# Initialize an empty list to hold the validated AGROVOC values
values = list()
# Try to split multi-value field on "||" separator
for value in field.split("||"):
@ -231,9 +235,25 @@ def agrovoc(field, field_name):
# check if there are any results
if len(data["results"]) == 0:
print(f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{value}")
if drop:
print(
f"{Fore.GREEN}Dropping invalid AGROVOC ({field_name}): {Fore.RESET}{value}"
)
else:
print(
f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{value}"
)
return
# value is invalid AGROVOC, but we are not dropping
values.append(value)
else:
# value is valid AGROVOC so save it
values.append(value)
# Create a new field consisting of all values joined with "||"
new_field = "||".join(values)
return new_field
def filename_extension(field):
@ -371,13 +391,20 @@ def mojibake(field, field_name):
return
def citation_doi(row):
def citation_doi(row, exclude):
"""Check for the scenario where an item has a DOI listed in its citation,
but does not have a cg.identifier.doi field.
Function prints a warning if the DOI field is missing, but there is a DOI
in the citation.
"""
# Check if the user requested us to skip any DOI fields so we can
# just return before going any further.
for field in exclude:
match = re.match(r"^.*?doi.*$", field)
if match is not None:
return
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
citation = ""
@ -395,9 +422,10 @@ def citation_doi(row):
if match is not None:
return
# Get the name of the citation field
# Check if the current label is a citation field and make sure the user
# hasn't asked to skip it. If not, then set the citation.
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None:
if match is not None and label not in exclude:
citation = row[label]
if citation != "":
@ -413,7 +441,7 @@ def citation_doi(row):
return
def title_in_citation(row):
def title_in_citation(row, exclude):
"""Check for the scenario where an item's title is missing from its cita-
tion. This could mean that it is missing entirely, or perhaps just exists
in a different format (whitespace, accents, etc).
@ -435,12 +463,12 @@ def title_in_citation(row):
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None:
if match is not None and label not in exclude:
title = row[label]
# Find the name of the citation column
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None:
if match is not None and label not in exclude:
citation = row[label]
if citation != "":
@ -450,7 +478,7 @@ def title_in_citation(row):
return
def countries_match_regions(row):
def countries_match_regions(row, exclude):
"""Check for the scenario where an item has country coverage metadata, but
does not have the corresponding region metadata. For example, an item that
has country coverage "Kenya" should also have region "Eastern Africa" acc-
@ -466,6 +494,15 @@ def countries_match_regions(row):
region_column_name = ""
title_column_name = ""
# Instantiate a CountryConverter() object here. According to the docs it is
# more performant to do that as opposed to calling coco.convert() directly
# because we don't need to re-load the country data with each iteration.
cc = coco.CountryConverter()
# Set logging to ERROR so country_converter's convert() doesn't print the
# "not found in regex" warning message to the screen.
logging.basicConfig(level=logging.ERROR)
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
@ -485,6 +522,12 @@ def countries_match_regions(row):
if match is not None:
title_column_name = label
# Make sure the user has not asked to exclude any metadata fields. If so, we
# should return immediately.
column_names = [country_column_name, region_column_name, title_column_name]
if any(field in column_names for field in exclude):
return
# Make sure we found the country and region columns
if country_column_name != "" and region_column_name != "":
# If we don't have any countries then we should return early before
@ -499,23 +542,15 @@ def countries_match_regions(row):
else:
regions = list()
# An empty list for our regions so we can keep track for all countries
missing_regions = list()
for country in countries:
# Look up the UN M.49 regions for this country code. CoCo seems to
# only list the direct region, ie Western Africa, rather than all
# the parent regions ("Sub-Saharan Africa", "Africa", "World")
un_region = coco.convert(names=country, to="UNRegion")
un_region = cc.convert(names=country, to="UNRegion")
if un_region not in regions:
if un_region not in missing_regions:
missing_regions.append(un_region)
if len(missing_regions) > 0:
for missing_region in missing_regions:
if un_region != "not found" and un_region not in regions:
print(
f"{Fore.YELLOW}Missing region ({missing_region}): {Fore.RESET}{row[title_column_name]}"
f"{Fore.YELLOW}Missing region ({un_region}): {Fore.RESET}{row[title_column_name]}"
)
return

View File

@ -8,7 +8,7 @@ from colorama import Fore
from pycountry import languages
def correct_language(row):
def correct_language(row, exclude):
"""Analyze the text used in the title, abstract, and citation fields to pre-
dict the language being used and compare it with the item's dc.language.iso
field.
@ -39,7 +39,8 @@ def correct_language(row):
language = row[label]
# Extract title if it is present
# Extract title if it is present (note that we don't allow excluding
# the title here because it complicates things).
match = re.match(r"^.*?title.*$", label)
if match is not None:
title = row[label]
@ -48,12 +49,12 @@ def correct_language(row):
# Extract abstract if it is present
match = re.match(r"^.*?abstract.*$", label)
if match is not None:
if match is not None and label not in exclude:
sample_strings.append(row[label])
# Extract citation if it is present
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None:
if match is not None and label not in exclude:
sample_strings.append(row[label])
# Make sure language is not blank and is valid ISO 639-1/639-3 before proceeding with language prediction

View File

@ -1,11 +1,13 @@
# SPDX-License-Identifier: GPL-3.0-only
import logging
import re
from unicodedata import normalize
import country_converter as coco
import pandas as pd
from colorama import Fore
from ftfy import fix_text
from ftfy import TextFixerConfig, fix_text
from csv_metadata_quality.util import is_mojibake, is_nfc
@ -104,6 +106,7 @@ def unnecessary_unicode(field):
Replaces unnecessary Unicode characters like:
- Soft hyphen (U+00AD) → hyphen
- No-break space (U+00A0) → space
- Thin space (U+2009) → space
Return string with characters removed or replaced.
"""
@ -148,6 +151,16 @@ def unnecessary_unicode(field):
)
field = re.sub(pattern, "-", field)
# Check for thin spaces (U+2009)
pattern = re.compile(r"\u2009")
match = re.findall(pattern, field)
if match:
print(
f"{Fore.GREEN}Replacing unnecessary Unicode (U+2009): {Fore.RESET}{field}"
)
field = re.sub(pattern, " ", field)
return field
@ -269,9 +282,108 @@ def mojibake(field, field_name):
if pd.isna(field):
return field
# We don't want ftfy to change “smart quotes” to "ASCII quotes"
config = TextFixerConfig(uncurl_quotes=False)
if is_mojibake(field):
print(f"{Fore.GREEN}Fixing encoding issue ({field_name}): {Fore.RESET}{field}")
return fix_text(field)
return fix_text(field, config)
else:
return field
def countries_match_regions(row, exclude):
"""Check for the scenario where an item has country coverage metadata, but
does not have the corresponding region metadata. For example, an item that
has country coverage "Kenya" should also have region "Eastern Africa" acc-
ording to the UN M.49 classification scheme.
See: https://unstats.un.org/unsd/methodology/m49/
Return fixed string.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
country_column_name = ""
region_column_name = ""
title_column_name = ""
# Instantiate a CountryConverter() object here. According to the docs it is
# more performant to do that as opposed to calling coco.convert() directly
# because we don't need to re-load the country data with each iteration.
cc = coco.CountryConverter()
# Set logging to ERROR so country_converter's convert() doesn't print the
# "not found in regex" warning message to the screen.
logging.basicConfig(level=logging.ERROR)
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
for label in row.axes[0]:
# Find the name of the country column
match = re.match(r"^.*?country.*$", label)
if match is not None:
country_column_name = label
# Find the name of the region column
match = re.match(r"^.*?region.*$", label)
if match is not None:
region_column_name = label
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None:
title_column_name = label
# Make sure the user has not asked to exclude any metadata fields. If so, we
# should return immediately.
column_names = [country_column_name, region_column_name, title_column_name]
if any(field in column_names for field in exclude):
return row
# Make sure we found the country and region columns
if country_column_name != "" and region_column_name != "":
# If we don't have any countries then we should return early before
# suggesting regions.
if row[country_column_name] is not None:
countries = row[country_column_name].split("||")
else:
return row
if row[region_column_name] is not None:
regions = row[region_column_name].split("||")
else:
regions = list()
# An empty list for our regions so we can keep track for all countries
missing_regions = list()
for country in countries:
# Look up the UN M.49 regions for this country code. CoCo seems to
# only list the direct region, ie Western Africa, rather than all
# the parent regions ("Sub-Saharan Africa", "Africa", "World")
un_region = cc.convert(names=country, to="UNRegion")
# Add the new un_region to regions if it is not "not found" and if
# it doesn't already exist in regions.
if un_region != "not found" and un_region not in regions:
if un_region not in missing_regions:
print(
f"{Fore.YELLOW}Adding missing region ({un_region}): {Fore.RESET}{row[title_column_name]}"
)
missing_regions.append(un_region)
if len(missing_regions) > 0:
# Add the missing regions back to the row, paying attention to whether
# or not the row's region column is None (aka null) or just an empty
# string (length would be 0).
if row[region_column_name] is not None and len(row[region_column_name]) > 0:
row[region_column_name] = (
row[region_column_name] + "||" + "||".join(missing_regions)
)
else:
row[region_column_name] = "||".join(missing_regions)
return row

View File

@ -1,6 +1,6 @@
# SPDX-License-Identifier: GPL-3.0-only
from ftfy.badness import sequence_weirdness
from ftfy.badness import is_bad
def is_nfc(field):
@ -38,7 +38,7 @@ def is_mojibake(field):
Return boolean.
"""
if not sequence_weirdness(field):
if not is_bad(field):
# Nothing weird, should be okay
return False
try:

View File

@ -1,3 +1,3 @@
# SPDX-License-Identifier: GPL-3.0-only
VERSION = "0.5.0"
VERSION = "0.6.0"

13
data/test-geography.csv Normal file
View File

@ -0,0 +1,13 @@
dc.title,dcterms.issued,dcterms.type,dc.contributor.author,cg.coverage.country,cg.coverage.region
No country,2022-09-01,Report,"Orth, Alan",,
Matching country and region,2022-09-01,Report,"Orth, Alan",Kenya,Eastern Africa
Missing region,2022-09-01,Report,"Orth, Alan",Kenya,
Caribbean country with matching region,2022-09-01,Report,"Orth, Alan",Bahamas,Caribbean
Caribbean country with no region,2022-09-01,Report,"Orth, Alan",Bahamas,
Fake country with no region,2022-09-01,Report,"Orth, Alan",Yeah Baby,
SE Asian country with matching region,2022-09-01,Report,"Orth, Alan",Cambodia,South-eastern Asia
SE Asian country with no region,2022-09-01,Report,"Orth, Alan",Cambodia,
Duplicate countries with matching region,2022-09-01,Report,"Orth, Alan",Kenya||Kenya,Eastern Africa
Duplicate countries with missing regions,2022-09-01,Report,"Orth, Alan",Kenya||Kenya,
Multiple countries with no regions,2022-09-01,Report,"Orth, Alan",Kenya||Bahamas,
Multiple countries with mixed matching regions,2022-09-01,Report,"Orth, Alan",Kenya||Bahamas,Eastern Africa
1 dc.title dcterms.issued dcterms.type dc.contributor.author cg.coverage.country cg.coverage.region
2 No country 2022-09-01 Report Orth, Alan
3 Matching country and region 2022-09-01 Report Orth, Alan Kenya Eastern Africa
4 Missing region 2022-09-01 Report Orth, Alan Kenya
5 Caribbean country with matching region 2022-09-01 Report Orth, Alan Bahamas Caribbean
6 Caribbean country with no region 2022-09-01 Report Orth, Alan Bahamas
7 Fake country with no region 2022-09-01 Report Orth, Alan Yeah Baby
8 SE Asian country with matching region 2022-09-01 Report Orth, Alan Cambodia South-eastern Asia
9 SE Asian country with no region 2022-09-01 Report Orth, Alan Cambodia
10 Duplicate countries with matching region 2022-09-01 Report Orth, Alan Kenya||Kenya Eastern Africa
11 Duplicate countries with missing regions 2022-09-01 Report Orth, Alan Kenya||Kenya
12 Multiple countries with no regions 2022-09-01 Report Orth, Alan Kenya||Bahamas
13 Multiple countries with mixed matching regions 2022-09-01 Report Orth, Alan Kenya||Bahamas Eastern Africa

View File

@ -16,7 +16,7 @@ Suspicious character||foreˆt,2019-07-29,,,,,,,,,,,
Invalid ISO 639-1 (alpha 2) language,2019-07-29,,,jp,,,,,,,,
Invalid ISO 639-3 (alpha 3) language,2019-07-29,,,chi,,,,,,,,
Invalid language,2019-07-29,,,Span,,,,,,,,
Invalid AGROVOC subject,2019-07-29,,,,FOREST,,,,,,,
Invalid AGROVOC subject,2019-07-29,,,,LIVESTOCK||FOREST,,,,,,,
Newline (LF),2019-07-30,,,,"TANZA
NIA",,,,,,,
Missing date,,,,,,,,,,,,

1 dc.title dcterms.issued dc.identifier.issn dc.identifier.isbn dcterms.language dcterms.subject cg.coverage.country filename dcterms.license dcterms.type dcterms.bibliographicCitation cg.identifier.doi cg.coverage.region
16 Invalid ISO 639-1 (alpha 2) language 2019-07-29 jp
17 Invalid ISO 639-3 (alpha 3) language 2019-07-29 chi
18 Invalid language 2019-07-29 Span
19 Invalid AGROVOC subject 2019-07-29 FOREST LIVESTOCK||FOREST
20 Newline (LF) 2019-07-30 TANZA NIA
21 Missing date
22 Invalid country 2019-08-01 KENYAA

1047
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "csv-metadata-quality"
version = "0.5.0"
version = "0.6.0"
description="A simple, but opinionated CSV quality checking and fixing pipeline for CSVs in the DSpace ecosystem."
authors = ["Alan Orth <alan.orth@gmail.com>"]
license="GPL-3.0-only"
@ -11,28 +11,25 @@ homepage = "https://github.com/ilri/csv-metadata-quality"
csv-metadata-quality = 'csv_metadata_quality.__main__:main'
[tool.poetry.dependencies]
python = "^3.7.1"
pandas = "^1.0.4"
python = "^3.8"
pandas = "^1.4.0"
python-stdnum = "^1.13"
xlrd = "^1.2.0"
requests = "^2.23.0"
requests-cache = "~0.6.4"
pycountry = "^19.8.18"
requests = "^2.28.1"
requests-cache = "^0.9.6"
pycountry = "^22.3.5"
langid = "^1.1.6"
colorama = "^0.4.4"
colorama = "^0.4.5"
spdx-license-list = "^0.5.2"
ftfy = "^5.9"
SQLAlchemy = ">=1.3.3,<1.4.23"
country-converter = "^0.7.4"
ftfy = "^6.1.1"
country-converter = "^0.7.7"
[tool.poetry.dev-dependencies]
pytest = "^6.1.1"
ipython = { version = "^7.18.1", python = "^3.7" }
flake8 = "^3.8.4"
pytest = "^7.1.3"
flake8 = "^5.0.4"
pytest-clarity = "^1.0.1"
black = "^21.6b0"
isort = "^5.5.4"
csvkit = "^1.0.5"
black = "^22.8.0"
isort = "^5.10.1"
csvkit = "^1.0.7"
[build-system]
requires = ["poetry>=0.12"]

View File

@ -1,82 +1,68 @@
agate-dbf==0.2.2
agate-excel==0.2.5
agate-sql==0.5.8
agate==1.6.3
appnope==0.1.2; python_version >= "3.7" and python_version < "4.0" and sys_platform == "darwin"
atomicwrites==1.4.0; python_version >= "3.6" and python_full_version < "3.0.0" and sys_platform == "win32" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6") or sys_platform == "win32" and python_version >= "3.6" and python_full_version >= "3.4.0" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6")
attrs==21.2.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
babel==2.9.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
backcall==0.2.0; python_version >= "3.7" and python_version < "4.0"
black==21.12b0; python_full_version >= "3.6.2"
certifi==2021.10.8; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6"
charset-normalizer==2.0.9; python_full_version >= "3.6.0" and python_version >= "3.6"
click==8.0.3; python_version >= "3.6" and python_full_version >= "3.6.2"
colorama==0.4.4; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
commonmark==0.9.1; python_full_version >= "3.6.2" and python_full_version < "4.0.0" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0")
country-converter==0.7.4
csvkit==1.0.6
dbfread==2.0.7
decorator==5.1.0; python_version >= "3.7" and python_version < "4.0"
et-xmlfile==1.1.0; python_version >= "3.6"
flake8==3.9.2; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
ftfy==5.9; python_version >= "3.5"
future==0.18.2; python_version >= "2.6" and python_full_version < "3.0.0" or python_full_version >= "3.3.0"
greenlet==1.1.2; python_version >= "3" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3"
idna==3.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6"
importlib-metadata==4.8.2; python_full_version >= "3.6.2" and python_version < "3.8" and python_version >= "3.6" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6") and (python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6")
iniconfig==1.1.1; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
ipython==7.30.1; python_version >= "3.7" and python_version < "4.0"
isodate==0.6.0
isort==5.10.1; python_full_version >= "3.6.1" and python_version < "4.0"
itsdangerous==2.0.1; python_version >= "3.6"
jedi==0.18.1; python_version >= "3.7" and python_version < "4.0"
langid==1.1.6
leather==0.3.4
matplotlib-inline==0.1.3; python_version >= "3.7" and python_version < "4.0"
mccabe==0.6.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
mypy-extensions==0.4.3; python_full_version >= "3.6.2"
numpy==1.21.1
olefile==0.46; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
openpyxl==3.0.9; python_version >= "3.6"
packaging==21.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
pandas==1.3.4; python_full_version >= "3.7.1"
parsedatetime==2.4
parso==0.8.3; python_version >= "3.7" and python_version < "4.0"
pathspec==0.9.0; python_full_version >= "3.6.2"
pexpect==4.8.0; python_version >= "3.7" and python_version < "4.0" and sys_platform != "win32"
pickleshare==0.7.5; python_version >= "3.7" and python_version < "4.0"
platformdirs==2.4.0; python_version >= "3.6" and python_full_version >= "3.6.2"
pluggy==1.0.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
pprintpp==0.4.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
prompt-toolkit==3.0.23; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.2"
ptyprocess==0.7.0; python_version >= "3.7" and python_version < "4.0" and sys_platform != "win32"
py==1.11.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
pycodestyle==2.7.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
pycountry==19.8.18
pyflakes==2.3.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
pygments==2.10.0; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.2" and python_full_version < "4.0.0" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0")
pyparsing==3.0.6; python_version >= "3.6"
pytest-clarity==1.0.1; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0")
pytest==6.2.5; python_version >= "3.6"
python-dateutil==2.8.2; python_full_version >= "3.7.1"
python-slugify==5.0.2; python_version >= "3.6"
python-stdnum==1.17
pytimeparse==1.1.8
pytz==2021.3; python_full_version >= "3.7.1"
requests-cache==0.6.4; python_version >= "3.6"
requests==2.26.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0")
rich==10.15.2; python_full_version >= "3.6.2" and python_full_version < "4.0.0" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0")
six==1.16.0; python_full_version >= "3.7.1" and python_version >= "3.6" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.3.0")
spdx-license-list==0.5.2
sqlalchemy==1.4.22; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0")
text-unidecode==1.3; python_version >= "3.6"
toml==0.10.2; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
tomli==1.2.2; python_version >= "3.6" and python_full_version >= "3.6.2"
traitlets==5.1.1; python_version >= "3.7" and python_version < "4.0"
typed-ast==1.5.1; python_version < "3.8" and implementation_name == "cpython" and python_full_version >= "3.6.2" and python_version >= "3.6"
typing-extensions==4.0.1
url-normalize==1.4.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6"
urllib3==1.26.7; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version < "4" and python_version >= "3.6"
wcwidth==0.2.5; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.2"
xlrd==1.2.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0")
zipp==3.6.0; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6"
agate-dbf==0.2.2 ; python_version >= "3.8" and python_version < "4.0"
agate-excel==0.2.5 ; python_version >= "3.8" and python_version < "4.0"
agate-sql==0.5.8 ; python_version >= "3.8" and python_version < "4.0"
agate==1.6.3 ; python_version >= "3.8" and python_version < "4.0"
appdirs==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
attrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
babel==2.10.3 ; python_version >= "3.8" and python_version < "4.0"
black==22.8.0 ; python_version >= "3.8" and python_version < "4.0"
cattrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
certifi==2022.6.15 ; python_version >= "3.8" and python_version < "4"
charset-normalizer==2.1.1 ; python_version >= "3.8" and python_version < "4"
click==8.1.3 ; python_version >= "3.8" and python_version < "4.0"
colorama==0.4.5 ; python_version >= "3.8" and python_version < "4.0"
commonmark==0.9.1 ; python_version >= "3.8" and python_version < "4.0"
country-converter==0.7.7 ; python_version >= "3.8" and python_version < "4.0"
csvkit==1.0.7 ; python_version >= "3.8" and python_version < "4.0"
dbfread==2.0.7 ; python_version >= "3.8" and python_version < "4.0"
et-xmlfile==1.1.0 ; python_version >= "3.8" and python_version < "4.0"
exceptiongroup==1.0.0rc9 ; python_version >= "3.8" and python_version <= "3.10"
flake8==5.0.4 ; python_version >= "3.8" and python_version < "4.0"
ftfy==6.1.1 ; python_version >= "3.8" and python_version < "4"
future==0.18.2 ; python_version >= "3.8" and python_version < "4.0"
greenlet==1.1.3 ; python_version >= "3.8" and (platform_machine == "aarch64" or platform_machine == "ppc64le" or platform_machine == "x86_64" or platform_machine == "amd64" or platform_machine == "AMD64" or platform_machine == "win32" or platform_machine == "WIN32") and python_version < "4.0"
idna==3.3 ; python_version >= "3.8" and python_version < "4"
iniconfig==1.1.1 ; python_version >= "3.8" and python_version < "4.0"
isodate==0.6.1 ; python_version >= "3.8" and python_version < "4.0"
isort==5.10.1 ; python_version >= "3.8" and python_version < "4.0"
langid==1.1.6 ; python_version >= "3.8" and python_version < "4.0"
leather==0.3.4 ; python_version >= "3.8" and python_version < "4.0"
mccabe==0.7.0 ; python_version >= "3.8" and python_version < "4.0"
mypy-extensions==0.4.3 ; python_version >= "3.8" and python_version < "4.0"
numpy==1.23.2 ; python_version < "4.0" and python_version >= "3.8"
olefile==0.46 ; python_version >= "3.8" and python_version < "4.0"
openpyxl==3.0.10 ; python_version >= "3.8" and python_version < "4.0"
packaging==21.3 ; python_version >= "3.8" and python_version < "4.0"
pandas==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
parsedatetime==2.4 ; python_version >= "3.8" and python_version < "4.0"
pathspec==0.10.1 ; python_version >= "3.8" and python_version < "4.0"
platformdirs==2.5.2 ; python_version >= "3.8" and python_version < "4.0"
pluggy==1.0.0 ; python_version >= "3.8" and python_version < "4.0"
pprintpp==0.4.0 ; python_version >= "3.8" and python_version < "4.0"
py==1.11.0 ; python_version >= "3.8" and python_version < "4.0"
pycodestyle==2.9.1 ; python_version >= "3.8" and python_version < "4.0"
pycountry==22.3.5 ; python_version >= "3.8" and python_version < "4"
pyflakes==2.5.0 ; python_version >= "3.8" and python_version < "4.0"
pygments==2.13.0 ; python_version >= "3.8" and python_version < "4.0"
pyparsing==3.0.9 ; python_version >= "3.8" and python_version < "4.0"
pytest-clarity==1.0.1 ; python_version >= "3.8" and python_version < "4.0"
pytest==7.1.3 ; python_version >= "3.8" and python_version < "4.0"
python-dateutil==2.8.2 ; python_version >= "3.8" and python_version < "4.0"
python-slugify==6.1.2 ; python_version >= "3.8" and python_version < "4.0"
python-stdnum==1.17 ; python_version >= "3.8" and python_version < "4.0"
pytimeparse==1.1.8 ; python_version >= "3.8" and python_version < "4.0"
pytz==2022.2.1 ; python_version >= "3.8" and python_version < "4.0"
requests-cache==0.9.6 ; python_version >= "3.8" and python_version < "4.0"
requests==2.28.1 ; python_version >= "3.8" and python_version < "4"
rich==12.5.1 ; python_version >= "3.8" and python_version < "4.0"
setuptools==65.3.0 ; python_version >= "3.8" and python_version < "4"
six==1.16.0 ; python_version >= "3.8" and python_version < "4.0"
spdx-license-list==0.5.2 ; python_version >= "3.8" and python_version < "4.0"
sqlalchemy==1.4.40 ; python_version >= "3.8" and python_version < "4.0"
text-unidecode==1.3 ; python_version >= "3.8" and python_version < "4.0"
tomli==2.0.1 ; python_version >= "3.8" and python_version < "4.0"
typing-extensions==4.3.0 ; python_version >= "3.8" and python_version < "3.10"
url-normalize==1.4.3 ; python_version >= "3.8" and python_version < "4.0"
urllib3==1.26.12 ; python_version >= "3.8" and python_version < "4"
wcwidth==0.2.5 ; python_version >= "3.8" and python_version < "4"
xlrd==2.0.1 ; python_version >= "3.8" and python_version < "4.0"

View File

@ -1,201 +1,25 @@
certifi==2021.10.8; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:d62a0163eb4c2344ac042ab2bdf75399a71a2d8c7d47eac2e2ee91b9d6339569 \
--hash=sha256:78884e7c1d4b00ce3cea67b44566851c4343c120abd683433ce934a68ea58872
charset-normalizer==2.0.9; python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:b0b883e8e874edfdece9c28f314e3dd5badf067342e42fb162203335ae61aa2c \
--hash=sha256:1eecaa09422db5be9e29d7fc65664e6c33bd06f9ced7838578ba40d58bdf3721
colorama==0.4.4; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0") \
--hash=sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2 \
--hash=sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b
country-converter==0.7.4 \
--hash=sha256:0291cc91c4a4efe7f128a11c8c6e4cb761f7fea7cde2517f8677c7c56da334d3
ftfy==5.9; python_version >= "3.5" \
--hash=sha256:8c4fb2863c0b82eae2ab3cf353d9ade268dfbde863d322f78d6a9fd5cefb31e9
greenlet==1.1.2; python_version >= "3" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3" \
--hash=sha256:58df5c2a0e293bf665a51f8a100d3e9956febfbf1d9aaf8c0677cf70218910c6 \
--hash=sha256:aec52725173bd3a7b56fe91bc56eccb26fbdff1386ef123abb63c84c5b43b63a \
--hash=sha256:833e1551925ed51e6b44c800e71e77dacd7e49181fdc9ac9a0bf3714d515785d \
--hash=sha256:aa5b467f15e78b82257319aebc78dd2915e4c1436c3c0d1ad6f53e47ba6e2713 \
--hash=sha256:40b951f601af999a8bf2ce8c71e8aaa4e8c6f78ff8afae7b808aae2dc50d4c40 \
--hash=sha256:95e69877983ea39b7303570fa6760f81a3eec23d0e3ab2021b7144b94d06202d \
--hash=sha256:356b3576ad078c89a6107caa9c50cc14e98e3a6c4874a37c3e0273e4baf33de8 \
--hash=sha256:8639cadfda96737427330a094476d4c7a56ac03de7265622fcf4cfe57c8ae18d \
--hash=sha256:97e5306482182170ade15c4b0d8386ded995a07d7cc2ca8f27958d34d6736497 \
--hash=sha256:e6a36bb9474218c7a5b27ae476035497a6990e21d04c279884eb10d9b290f1b1 \
--hash=sha256:abb7a75ed8b968f3061327c433a0fbd17b729947b400747c334a9c29a9af6c58 \
--hash=sha256:14d4f3cd4e8b524ae9b8aa567858beed70c392fdec26dbdb0a8a418392e71708 \
--hash=sha256:17ff94e7a83aa8671a25bf5b59326ec26da379ace2ebc4411d690d80a7fbcf23 \
--hash=sha256:9f3cba480d3deb69f6ee2c1825060177a22c7826431458c697df88e6aeb3caee \
--hash=sha256:fa877ca7f6b48054f847b61d6fa7bed5cebb663ebc55e018fda12db09dcc664c \
--hash=sha256:7cbd7574ce8e138bda9df4efc6bf2ab8572c9aff640d8ecfece1b006b68da963 \
--hash=sha256:903bbd302a2378f984aef528f76d4c9b1748f318fe1294961c072bdc7f2ffa3e \
--hash=sha256:049fe7579230e44daef03a259faa24511d10ebfa44f69411d99e6a184fe68073 \
--hash=sha256:dd0b1e9e891f69e7675ba5c92e28b90eaa045f6ab134ffe70b52e948aa175b3c \
--hash=sha256:7418b6bfc7fe3331541b84bb2141c9baf1ec7132a7ecd9f375912eca810e714e \
--hash=sha256:f9d29ca8a77117315101425ec7ec2a47a22ccf59f5593378fc4077ac5b754fce \
--hash=sha256:21915eb821a6b3d9d8eefdaf57d6c345b970ad722f856cd71739493ce003ad08 \
--hash=sha256:eff9d20417ff9dcb0d25e2defc2574d10b491bf2e693b4e491914738b7908168 \
--hash=sha256:32ca72bbc673adbcfecb935bb3fb1b74e663d10a4b241aaa2f5a75fe1d1f90aa \
--hash=sha256:f0214eb2a23b85528310dad848ad2ac58e735612929c8072f6093f3585fd342d \
--hash=sha256:b92e29e58bef6d9cfd340c72b04d74c4b4e9f70c9fa7c78b674d1fec18896dc4 \
--hash=sha256:fdcec0b8399108577ec290f55551d926d9a1fa6cad45882093a7a07ac5ec147b \
--hash=sha256:93f81b134a165cc17123626ab8da2e30c0455441d4ab5576eed73a64c025b25c \
--hash=sha256:1e12bdc622676ce47ae9abbf455c189e442afdde8818d9da983085df6312e7a1 \
--hash=sha256:8c790abda465726cfb8bb08bd4ca9a5d0a7bd77c7ac1ca1b839ad823b948ea28 \
--hash=sha256:f276df9830dba7a333544bd41070e8175762a7ac20350786b322b714b0e654f5 \
--hash=sha256:64e6175c2e53195278d7388c454e0b30997573f3f4bd63697f88d855f7a6a1fc \
--hash=sha256:b11548073a2213d950c3f671aa88e6f83cda6e2fb97a8b6317b1b5b33d850e06 \
--hash=sha256:9633b3034d3d901f0a46b7939f8c4d64427dfba6bbc5a36b1a67364cf148a1b0 \
--hash=sha256:eb6ea6da4c787111adf40f697b4e58732ee0942b5d3bd8f435277643329ba627 \
--hash=sha256:f3acda1924472472ddd60c29e5b9db0cec629fbe3c5c5accb74d6d6d14773478 \
--hash=sha256:e859fcb4cbe93504ea18008d1df98dee4f7766db66c435e4882ab35cf70cac43 \
--hash=sha256:00e44c8afdbe5467e4f7b5851be223be68adb4272f44696ee71fe46b7036a711 \
--hash=sha256:ec8c433b3ab0419100bd45b47c9c8551248a5aee30ca5e9d399a0b57ac04651b \
--hash=sha256:288c6a76705dc54fba69fbcb59904ae4ad768b4c768839b8ca5fdadec6dd8cfd \
--hash=sha256:8d2f1fb53a421b410751887eb4ff21386d119ef9cde3797bf5e7ed49fb51a3b3 \
--hash=sha256:166eac03e48784a6a6e0e5f041cfebb1ab400b394db188c48b3a84737f505b67 \
--hash=sha256:572e1787d1460da79590bf44304abbc0a2da944ea64ec549188fa84d89bba7ab \
--hash=sha256:be5f425ff1f5f4b3c1e33ad64ab994eed12fc284a6ea71c5243fd564502ecbe5 \
--hash=sha256:b1692f7d6bc45e3200844be0dba153612103db241691088626a33ff1f24a0d88 \
--hash=sha256:7227b47e73dedaa513cdebb98469705ef0d66eb5a1250144468e9c3097d6b59b \
--hash=sha256:7ff61ff178250f9bb3cd89752df0f1dd0e27316a8bd1465351652b1b4a4cdfd3 \
--hash=sha256:f70a9e237bb792c7cc7e44c531fd48f5897961701cdaa06cf22fc14965c496cf \
--hash=sha256:013d61294b6cd8fe3242932c1c5e36e5d1db2c8afb58606c5a67efce62c1f5fd \
--hash=sha256:e30f5ea4ae2346e62cedde8794a56858a67b878dd79f7df76a0767e356b1744a
idna==3.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:84d9dd047ffa80596e0f246e2eab0b391788b0503584e8945f2368256d2735ff \
--hash=sha256:9d643ff0a55b762d5cdb124b8eaa99c66322e2157b69160bc32796e824360e6d
importlib-metadata==4.8.2; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6" \
--hash=sha256:53ccfd5c134223e497627b9815d5030edf77d2ed573922f7a0b8f8bb81a1c100 \
--hash=sha256:75bdec14c397f528724c1bfd9709d660b33a4d2e77387a3358f20b848bb5e5fb
itsdangerous==2.0.1; python_version >= "3.6" \
--hash=sha256:5174094b9637652bdb841a3029700391451bd092ba3db90600dea710ba28e97c \
--hash=sha256:9e724d68fc22902a1435351f84c3fb8623f303fffcc566a4cb952df8c572cff0
langid==1.1.6 \
--hash=sha256:044bcae1912dab85c33d8e98f2811b8f4ff1213e5e9a9e9510137b84da2cb293
numpy==1.21.1 \
--hash=sha256:38e8648f9449a549a7dfe8d8755a5979b45b3538520d1e735637ef28e8c2dc50 \
--hash=sha256:fd7d7409fa643a91d0a05c7554dd68aa9c9bb16e186f6ccfe40d6e003156e33a \
--hash=sha256:a75b4498b1e93d8b700282dc8e655b8bd559c0904b3910b144646dbbbc03e062 \
--hash=sha256:1412aa0aec3e00bc23fbb8664d76552b4efde98fb71f60737c83efbac24112f1 \
--hash=sha256:e46ceaff65609b5399163de5893d8f2a82d3c77d5e56d976c8b5fb01faa6b671 \
--hash=sha256:c6a2324085dd52f96498419ba95b5777e40b6bcbc20088fddb9e8cbb58885e8e \
--hash=sha256:73101b2a1fef16602696d133db402a7e7586654682244344b8329cdcbbb82172 \
--hash=sha256:7a708a79c9a9d26904d1cca8d383bf869edf6f8e7650d85dbc77b041e8c5a0f8 \
--hash=sha256:95b995d0c413f5d0428b3f880e8fe1660ff9396dcd1f9eedbc311f37b5652e16 \
--hash=sha256:635e6bd31c9fb3d475c8f44a089569070d10a9ef18ed13738b03049280281267 \
--hash=sha256:4a3d5fb89bfe21be2ef47c0614b9c9c707b7362386c9a3ff1feae63e0267ccb6 \
--hash=sha256:8a326af80e86d0e9ce92bcc1e65c8ff88297de4fa14ee936cb2293d414c9ec63 \
--hash=sha256:791492091744b0fe390a6ce85cc1bf5149968ac7d5f0477288f78c89b385d9af \
--hash=sha256:0318c465786c1f63ac05d7c4dbcecd4d2d7e13f0959b01b534ea1e92202235c5 \
--hash=sha256:9a513bd9c1551894ee3d31369f9b07460ef223694098cf27d399513415855b68 \
--hash=sha256:91c6f5fc58df1e0a3cc0c3a717bb3308ff850abdaa6d2d802573ee2b11f674a8 \
--hash=sha256:978010b68e17150db8765355d1ccdd450f9fc916824e8c4e35ee620590e234cd \
--hash=sha256:9749a40a5b22333467f02fe11edc98f022133ee1bfa8ab99bda5e5437b831214 \
--hash=sha256:d7a4aeac3b94af92a9373d6e77b37691b86411f9745190d2c351f410ab3a791f \
--hash=sha256:d9e7912a56108aba9b31df688a4c4f5cb0d9d3787386b87d504762b6754fbb1b \
--hash=sha256:25b40b98ebdd272bc3020935427a4530b7d60dfbe1ab9381a39147834e985eac \
--hash=sha256:8a92c5aea763d14ba9d6475803fc7904bda7decc2a0a68153f587ad82941fec1 \
--hash=sha256:05a0f648eb28bae4bcb204e6fd14603de2908de982e761a2fc78efe0f19e96e1 \
--hash=sha256:f01f28075a92eede918b965e86e8f0ba7b7797a95aa8d35e1cc8821f5fc3ad6a \
--hash=sha256:88c0b89ad1cc24a5efbb99ff9ab5db0f9a86e9cc50240177a571fbe9c2860ac2 \
--hash=sha256:01721eefe70544d548425a07c80be8377096a54118070b8a62476866d5208e33 \
--hash=sha256:2d4d1de6e6fb3d28781c73fbde702ac97f03d79e4ffd6598b880b2d95d62ead4 \
--hash=sha256:dff4af63638afcc57a3dfb9e4b26d434a7a602d225b42d746ea7fe2edf1342fd
pandas==1.3.4; python_full_version >= "3.7.1" \
--hash=sha256:9707bdc1ea9639c886b4d3be6e2a45812c1ac0c2080f94c31b71c9fa35556f9b \
--hash=sha256:c2f44425594ae85e119459bb5abb0748d76ef01d9c08583a667e3339e134218e \
--hash=sha256:372d72a3d8a5f2dbaf566a5fa5fa7f230842ac80f29a931fb4b071502cf86b9a \
--hash=sha256:d99d2350adb7b6c3f7f8f0e5dfb7d34ff8dd4bc0a53e62c445b7e43e163fce63 \
--hash=sha256:4acc28364863127bca1029fb72228e6f473bb50c32e77155e80b410e2068eeac \
--hash=sha256:c2646458e1dce44df9f71a01dc65f7e8fa4307f29e5c0f2f92c97f47a5bf22f5 \
--hash=sha256:5298a733e5bfbb761181fd4672c36d0c627320eb999c59c65156c6a90c7e1b4f \
--hash=sha256:22808afb8f96e2269dcc5b846decacb2f526dd0b47baebc63d913bf847317c8f \
--hash=sha256:b528e126c13816a4374e56b7b18bfe91f7a7f6576d1aadba5dee6a87a7f479ae \
--hash=sha256:fe48e4925455c964db914b958f6e7032d285848b7538a5e1b19aeb26ffaea3ec \
--hash=sha256:eaca36a80acaacb8183930e2e5ad7f71539a66805d6204ea88736570b2876a7b \
--hash=sha256:42493f8ae67918bf129869abea8204df899902287a7f5eaf596c8e54e0ac7ff4 \
--hash=sha256:a388960f979665b447f0847626e40f99af8cf191bce9dc571d716433130cb3a7 \
--hash=sha256:5ba0aac1397e1d7b654fccf263a4798a9e84ef749866060d19e577e927d66e1b \
--hash=sha256:f567e972dce3bbc3a8076e0b675273b4a9e8576ac629149cf8286ee13c259ae5 \
--hash=sha256:c1aa4de4919358c5ef119f6377bc5964b3a7023c23e845d9db7d9016fa0c5b1c \
--hash=sha256:dd324f8ee05925ee85de0ea3f0d66e1362e8c80799eb4eb04927d32335a3e44a \
--hash=sha256:d47750cf07dee6b55d8423471be70d627314277976ff2edd1381f02d52dbadf9 \
--hash=sha256:2d1dc09c0013d8faa7474574d61b575f9af6257ab95c93dcf33a14fd8d2c1bab \
--hash=sha256:10e10a2527db79af6e830c3d5842a4d60383b162885270f8cffc15abca4ba4a9 \
--hash=sha256:35c77609acd2e4d517da41bae0c11c70d31c87aae8dd1aabd2670906c6d2c143 \
--hash=sha256:003ba92db58b71a5f8add604a17a059f3068ef4e8c0c365b088468d0d64935fd \
--hash=sha256:a51528192755f7429c5bcc9e80832c517340317c861318fea9cea081b57c9afd \
--hash=sha256:a2aa18d3f0b7d538e21932f637fbfe8518d085238b429e4790a35e1e44a96ffc
pycountry==19.8.18 \
--hash=sha256:3c57aa40adcf293d59bebaffbe60d8c39976fba78d846a018dc0c2ec9c6cb3cb
python-dateutil==2.8.2; python_full_version >= "3.7.1" \
--hash=sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86 \
--hash=sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9
python-stdnum==1.17 \
--hash=sha256:374e2b5e13912ccdbf50b0b23fca2c3e0531174805c32d74e145f37756328340 \
--hash=sha256:a46e6cf9652807314d369b654b255c86a59f93d18be2834f3d567ed1a346c547
pytz==2021.3; python_full_version >= "3.7.1" \
--hash=sha256:3672058bc3453457b622aab7a1c3bfd5ab0bdae451512f6cf25f64ed37f5b87c \
--hash=sha256:acad2d8b20a1af07d4e4c9d2e9285c5ed9104354062f275f3fcd88dcef4f1326
requests-cache==0.6.4; python_version >= "3.6" \
--hash=sha256:dd9120a4ab7b8128cba9b6b120d8b5560d566a3cd0f828cced3d3fd60a42ec40 \
--hash=sha256:1102daa13a804abe23fad62d694e7dee58d6063a35d94bf6e8c9821e22e5a78b
requests==2.26.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0") \
--hash=sha256:6c1246513ecd5ecd4528a0906f910e8f0f9c6b8ec72030dc9fd154dc1a6efd24 \
--hash=sha256:b8aa58f8cf793ffd8782d3d8cb19e66ef36f7aba4353eec859e74678b01b07a7
six==1.16.0; python_full_version >= "3.7.1" and python_version >= "3.6" \
--hash=sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 \
--hash=sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926
spdx-license-list==0.5.2 \
--hash=sha256:1b338470c7b403dbecceca563a316382c7977516128ca6c1e8f7078e3ed6e7b0 \
--hash=sha256:952996f72ab807972dc2278bb9b91e5294767211e51f09aad9c0e2ff5b82a31b
sqlalchemy==1.4.22; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0") \
--hash=sha256:488608953385d6c127d2dcbc4b11f8d7f2f30b89f6bd27c01b042253d985cc2f \
--hash=sha256:5d856cc50fd26fc8dd04892ed5a5a3d7eeb914fea2c2e484183e2d84c14926e0 \
--hash=sha256:a00d9c6d3a8afe1d1681cd8a5266d2f0ed684b0b44bada2ca82403b9e8b25d39 \
--hash=sha256:5908ea6c652a050d768580d01219c98c071e71910ab8e7b42c02af4010608397 \
--hash=sha256:b7fb937c720847879c7402fe300cfdb2aeff22349fa4ea3651bca4e2d6555939 \
--hash=sha256:9bfe882d5a1bbde0245dca0bd48da0976bd6634cf2041d2fdf0417c5463e40e5 \
--hash=sha256:eedd76f135461cf237534a6dc0d1e0f6bb88a1dc193678fab48a11d223462da5 \
--hash=sha256:6a16c7c4452293da5143afa3056680db2d187b380b3ef4d470d4e29885720de3 \
--hash=sha256:44d23ea797a5e0be71bc5454b9ae99158ea0edc79e2393c6e9a2354de88329c0 \
--hash=sha256:a5e14cb0c0a4ac095395f24575a0e7ab5d1be27f5f9347f1762f21505e3ba9f1 \
--hash=sha256:bc34a007e604091ca3a4a057525efc4cefd2b7fe970f44d20b9cfa109ab1bddb \
--hash=sha256:756f5d2f5b92d27450167247fb574b09c4cd192a3f8c2e493b3e518a204ee543 \
--hash=sha256:9fcbb4b4756b250ed19adc5e28c005b8ed56fdb5c21efa24c6822c0575b4964d \
--hash=sha256:09dbb4bc01a734ccddbf188deb2a69aede4b3c153a72b6d5c6900be7fb2945b1 \
--hash=sha256:f028ef6a1d828bc754852a022b2160e036202ac8658a6c7d34875aafd14a9a15 \
--hash=sha256:68393d3fd31469845b6ba11f5b4209edbea0b58506be0e077aafbf9aa2e21e11 \
--hash=sha256:891927a49b2363a4199763a9d436d97b0b42c65922a4ea09025600b81a00d17e \
--hash=sha256:fd2102a8f8a659522719ed73865dff3d3cc76eb0833039dc473e0ad3041d04be \
--hash=sha256:4014978de28163cd8027434916a92d0f5bb1a3a38dff5e8bf8bff4d9372a9117 \
--hash=sha256:f814d80844969b0d22ea63663da4de5ca1c434cfbae226188901e5d368792c17 \
--hash=sha256:d09a760b0a045b4d799102ae7965b5491ccf102123f14b2a8cc6c01d1021a2d9 \
--hash=sha256:26daa429f039e29b1e523bf763bfab17490556b974c77b5ca7acb545b9230e9a \
--hash=sha256:12bac5fa1a6ea870bdccb96fe01610641dd44ebe001ed91ef7fcd980e9702db5 \
--hash=sha256:39b5d36ab71f73c068cdcf70c38075511de73616e6c7fdd112d6268c2704d9f5 \
--hash=sha256:5102b9face693e8b2db3b2539c7e1a5d9a5b4dc0d79967670626ffd2f710d6e6 \
--hash=sha256:c9373ef67a127799027091fa53449125351a8c943ddaa97bec4e99271dbb21f4 \
--hash=sha256:36a089dc604032d41343d86290ce85d4e6886012eea73faa88001260abf5ff81 \
--hash=sha256:b48148ceedfb55f764562e04c00539bb9ea72bf07820ca15a594a9a049ff6b0e \
--hash=sha256:1fdae7d980a2fa617d119d0dc13ecb5c23cc63a8b04ffcb5298f2c59d86851e9 \
--hash=sha256:ec1be26cdccd60d180359a527d5980d959a26269a2c7b1b327a1eea0cab37ed8
typing-extensions==4.0.1; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6" \
--hash=sha256:7f001e5ac290a0c0401508864c7ec868be4e701886d5b573a9528ed3973d9d3b \
--hash=sha256:4ca091dea149f945ec56afb48dae714f21e8692ef22a395223bcd328961b6a0e
url-normalize==1.4.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:d23d3a070ac52a67b83a1c59a0e68f8608d1cd538783b401bc9de2c0fac999b2 \
--hash=sha256:ec3c301f04e5bb676d333a7fa162fa977ad2ca04b7e652bfc9fac4e405728eed
urllib3==1.26.7; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version < "4" and python_version >= "3.6" \
--hash=sha256:c4fdf4019605b6e5423637e01bc9fe4daef873709a7973e195ceba0a62bbc844 \
--hash=sha256:4987c65554f7a2dbf30c18fd48778ef124af6fab771a377103da0585e2336ece
wcwidth==0.2.5; python_version >= "3.5" \
--hash=sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784 \
--hash=sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83
xlrd==1.2.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0") \
--hash=sha256:e551fb498759fa3a5384a94ccd4c3c02eb7c00ea424426e212ac0c57be9dfbde \
--hash=sha256:546eb36cee8db40c3eaa46c351e67ffee6eeb5fa2650b71bc4c758a29a1b29b2
zipp==3.6.0; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6" \
--hash=sha256:9fe5ea21568a0a70e50f273397638d39b03353731e6cbbb3fd8502a33fec40bc \
--hash=sha256:71c644c5369f4a6e07636f0aa966270449561fcea2e3d6747b8d23efaa9d7832
appdirs==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
attrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
cattrs==22.1.0 ; python_version >= "3.8" and python_version < "4.0"
certifi==2022.6.15 ; python_version >= "3.8" and python_version < "4"
charset-normalizer==2.1.1 ; python_version >= "3.8" and python_version < "4"
colorama==0.4.5 ; python_version >= "3.8" and python_version < "4.0"
country-converter==0.7.7 ; python_version >= "3.8" and python_version < "4.0"
exceptiongroup==1.0.0rc9 ; python_version >= "3.8" and python_version <= "3.10"
ftfy==6.1.1 ; python_version >= "3.8" and python_version < "4"
idna==3.3 ; python_version >= "3.8" and python_version < "4"
langid==1.1.6 ; python_version >= "3.8" and python_version < "4.0"
numpy==1.23.2 ; python_version < "4.0" and python_version >= "3.8"
pandas==1.4.4 ; python_version >= "3.8" and python_version < "4.0"
pycountry==22.3.5 ; python_version >= "3.8" and python_version < "4"
python-dateutil==2.8.2 ; python_version >= "3.8" and python_version < "4.0"
python-stdnum==1.17 ; python_version >= "3.8" and python_version < "4.0"
pytz==2022.2.1 ; python_version >= "3.8" and python_version < "4.0"
requests-cache==0.9.6 ; python_version >= "3.8" and python_version < "4.0"
requests==2.28.1 ; python_version >= "3.8" and python_version < "4"
setuptools==65.3.0 ; python_version >= "3.8" and python_version < "4"
six==1.16.0 ; python_version >= "3.8" and python_version < "4.0"
spdx-license-list==0.5.2 ; python_version >= "3.8" and python_version < "4.0"
url-normalize==1.4.3 ; python_version >= "3.8" and python_version < "4.0"
urllib3==1.26.12 ; python_version >= "3.8" and python_version < "4"
wcwidth==0.2.5 ; python_version >= "3.8" and python_version < "4"

View File

@ -14,7 +14,7 @@ install_requires = [
setuptools.setup(
name="csv-metadata-quality",
version="0.5.0",
version="0.6.0",
author="Alan Orth",
author_email="aorth@mjanja.ch",
description="A simple, but opinionated CSV quality checking and fixing pipeline for CSVs in the DSpace ecosystem.",
@ -23,9 +23,9 @@ setuptools.setup(
long_description_content_type="text/markdown",
url="https://github.com/alanorth/csv-metadata-quality",
classifiers=[
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Operating System :: OS Independent",
],

View File

@ -179,18 +179,41 @@ def test_check_invalid_language(capsys):
def test_check_invalid_agrovoc(capsys):
"""Test invalid AGROVOC subject."""
"""Test invalid AGROVOC subject. Invalid values *will not* be dropped."""
value = "FOREST"
valid_agrovoc = "LIVESTOCK"
invalid_agrovoc = "FOREST"
value = f"{valid_agrovoc}||{invalid_agrovoc}"
field_name = "dcterms.subject"
drop = False
check.agrovoc(value, field_name)
new_value = check.agrovoc(value, field_name, drop)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{value}\n"
== f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{invalid_agrovoc}\n"
)
assert new_value == value
def test_check_invalid_agrovoc_dropped(capsys):
"""Test invalid AGROVOC subjects. Invalid values *will* be dropped."""
valid_agrovoc = "LIVESTOCK"
invalid_agrovoc = "FOREST"
value = f"{valid_agrovoc}||{invalid_agrovoc}"
field_name = "dcterms.subject"
drop = True
new_value = check.agrovoc(value, field_name, drop)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.GREEN}Dropping invalid AGROVOC ({field_name}): {Fore.RESET}{invalid_agrovoc}\n"
)
assert new_value == valid_agrovoc
def test_check_valid_agrovoc():
@ -198,10 +221,11 @@ def test_check_valid_agrovoc():
value = "FORESTS"
field_name = "dcterms.subject"
drop = False
result = check.agrovoc(value, field_name)
result = check.agrovoc(value, field_name, drop)
assert result == None
assert result == "FORESTS"
def test_check_uncommon_filename_extension(capsys):
@ -233,12 +257,13 @@ def test_check_incorrect_iso_639_1_language(capsys):
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "es"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
experimental.correct_language(series)
experimental.correct_language(series, exclude)
captured = capsys.readouterr()
assert (
@ -252,12 +277,13 @@ def test_check_incorrect_iso_639_3_language(capsys):
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "spa"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
experimental.correct_language(series)
experimental.correct_language(series, exclude)
captured = capsys.readouterr()
assert (
@ -271,12 +297,13 @@ def test_check_correct_iso_639_1_language():
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "en"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
result = experimental.correct_language(series)
result = experimental.correct_language(series, exclude)
assert result == None
@ -286,12 +313,13 @@ def test_check_correct_iso_639_3_language():
title = "A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle"
language = "eng"
exclude = list()
# Create a dictionary to mimic Pandas series
row = {"dc.title": title, "dc.language.iso": language}
series = pd.Series(row)
result = experimental.correct_language(series)
result = experimental.correct_language(series, exclude)
assert result == None
@ -379,8 +407,9 @@ def test_check_doi_field():
# the citation and a DOI field.
d = {"cg.identifier.doi": doi, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
exclude = list()
result = check.citation_doi(series)
result = check.citation_doi(series, exclude)
assert result == None
@ -389,13 +418,14 @@ def test_check_doi_only_in_citation(capsys):
"""Test an item with a DOI in its citation, but no DOI field."""
citation = "Orth, A. 2021. Testing all the things. doi: 10.1186/1743-422X-9-218"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series), with
# an empty DOI field and a citation containing a DOI.
d = {"cg.identifier.doi": None, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
check.citation_doi(series)
check.citation_doi(series, exclude)
captured = capsys.readouterr()
assert (
@ -409,13 +439,14 @@ def test_title_in_citation():
title = "Testing all the things"
citation = "Orth, A. 2021. Testing all the things."
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series), with
# the title and citation.
d = {"dc.title": title, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
result = check.title_in_citation(series)
result = check.title_in_citation(series, exclude)
assert result == None
@ -425,13 +456,14 @@ def test_title_not_in_citation(capsys):
title = "Testing all the things"
citation = "Orth, A. 2021. Testing all teh things."
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series), with
# the title and citation.
d = {"dc.title": title, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
check.title_in_citation(series)
check.title_in_citation(series, exclude)
captured = capsys.readouterr()
assert (
@ -445,12 +477,13 @@ def test_country_matches_region():
country = "Kenya"
region = "Eastern Africa"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series)
d = {"cg.coverage.country": country, "cg.coverage.region": region}
series = pd.Series(data=d)
result = check.countries_match_regions(series)
result = check.countries_match_regions(series, exclude)
assert result == None
@ -462,6 +495,7 @@ def test_country_not_matching_region(capsys):
country = "Kenya"
region = ""
missing_region = "Eastern Africa"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series)
d = {
@ -471,7 +505,7 @@ def test_country_not_matching_region(capsys):
}
series = pd.Series(data=d)
check.countries_match_regions(series)
check.countries_match_regions(series, exclude)
captured = capsys.readouterr()
assert (

View File

@ -1,5 +1,7 @@
# SPDX-License-Identifier: GPL-3.0-only
import pandas as pd
import csv_metadata_quality.fix as fix
@ -120,3 +122,33 @@ def test_fix_mojibake():
field_name = "dcterms.isPartOf"
assert fix.mojibake(field, field_name) == "CIAT Publicaçao"
def test_fix_country_not_matching_region():
"""Test an item with regions not matching its country list."""
title = "Testing an item with no matching region."
country = "Kenya"
region = ""
missing_region = "Eastern Africa"
exclude = list()
# Emulate a column in a transposed dataframe (which is just a series)
d = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": region,
}
series = pd.Series(data=d)
result = fix.countries_match_regions(series, exclude)
# Emulate the correct series we are expecting
d_correct = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": missing_region,
}
series_correct = pd.Series(data=d_correct)
pd.testing.assert_series_equal(result, series_correct)