1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2025-05-09 14:46:00 +02:00

90 Commits

Author SHA1 Message Date
cc34db7ff8 Version 0.5.0
All checks were successful
continuous-integration/drone/push Build is passing
2021-12-08 15:29:46 +02:00
b79e07b814 CHANGELOG.md: Add note about countries without regions 2021-12-08 15:21:45 +02:00
865b950c33 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-12-08 15:20:22 +02:00
6f269ca6b1 poetry.lock: run poetry update 2021-12-08 15:19:49 +02:00
120e8cf09f tests/test_check.py: add checks for countries without regions 2021-12-08 15:18:50 +02:00
a4eb79f625 data/test.csv: add data for countries without regions check 2021-12-08 15:17:55 +02:00
ccc2a73456 Add check for countries without matching regions
If we have country "Kenya" we should have region "Eastern Africa"
according to the UN M.49 geolocation scheme.
2021-12-08 15:02:20 +02:00
ad33195ba3 README.md: adjust intro
All checks were successful
continuous-integration/drone/push Build is passing
Makes the badges not wrap and looks better in my opinion.
2021-12-08 11:36:34 +02:00
72fe38972e Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-12-05 16:29:37 +02:00
04232d0ede poetry.lock: run poetry update 2021-12-05 16:29:09 +02:00
f5fa33bbc6 CHANGELOG.md: add title in citation note 2021-12-05 16:23:39 +02:00
1b978159c1 data/text.csv: Add data for title in citation test 2021-12-05 16:23:06 +02:00
4d5696c4cb csv_metadata_quality/check.py: update title in citation check
Initialize the titles and citations before the for loop so we can
access them later. This makes it easier to check if the item actua-
lly has a citation.
2021-12-05 16:21:44 +02:00
e02678cd7c tests/test_check.py: add tests for title in citation 2021-12-05 16:01:11 +02:00
01b4354a14 tests/test_check.py: fix comment 2021-12-05 15:58:25 +02:00
3b40a68279 Add check for title in citation
This checks if the item title exists in the citation. If it is not
present it could just be missing, or could have minor differences
in the whitespace, accents, etc.
2021-12-05 15:52:42 +02:00
999cc65097 csv_metadata_quality/app.py: adjust mojibake check
If unsafe fixes (-u) are enabled then we don't need to do the check
first before actually fixing them. Doing the check first creates e-
tra output that needs to be reviewed by the user.
2021-12-05 15:18:35 +02:00
a7c3be280d Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-11-27 12:26:21 +02:00
69f68e0a72 poetry.lock: Run poetry update 2021-11-27 12:25:40 +02:00
c941a90944 .drone.yml: Test on Python 3.10
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-11 20:09:32 +03:00
c95261f522 CHANGELOG.md: Add note about fix.newlines
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-08 14:37:12 +03:00
787fa9e8d9 Add field name to fix.newlines output 2021-10-08 14:36:43 +03:00
82261f7fe0 tests/test_check.py: Run black
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-06 22:10:26 +03:00
8a27fb2589 Add check for missing DOIs
All checks were successful
continuous-integration/drone/push Build is passing
Sometimes an editor includes a DOI in the citation field, but does
not add a standalone DOI field.
2021-10-06 21:25:39 +03:00
831ce979c3 CHANGELOG.md: Clarify regex fixes 2021-10-06 21:23:35 +03:00
58ef62fbcd Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-10-06 21:20:35 +03:00
8c59f57e76 poetry.lock: Run poetry update 2021-10-06 21:19:54 +03:00
72dd3e7272 CHANGELOG.md: Add notes about regexes 2021-10-06 19:35:59 +03:00
6ba16d5d4c csv_metadata_quality/check.py: Fix duplicate checker
Fix the incorrect type field regex, and improve the title regex to
consider dcterms.title and dc.title (along with the DSpace language
variants like dc.title[en_US]), but ignore dc.title.alternative.

See: https://regex101.com/r/I4m06F/1
2021-10-06 19:32:40 +03:00
81069259ba CHANGELOG.md: Add note about bibliographicCitation
All checks were successful
continuous-integration/drone/push Build is passing
2021-10-06 16:16:51 +03:00
54ab869297 csv_metadata_quality/experimental.py: Adjust citation match
We need to match both of these citation fields:

- dc.identifier.citation
- dcterms.bibliographicCitation
2021-10-06 16:13:10 +03:00
22b359c8a8 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-09-27 14:15:01 +03:00
3e06788d88 poetry.lock: Run poetry update 2021-09-27 14:11:21 +03:00
3c41cc283f Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-09-06 21:04:05 +03:00
5741e94571 poetry.lock: Run poetry update 2021-09-06 21:03:30 +03:00
215d61c188 pyproject.toml: limit SQLAlchemy to < 1.4.23
SQLAlchemy gets pulled in by csvkit's agate-sql dependency and there
is currently an issue with Poetry's parsing of the SQLAlchemy 1.4.23
constraints. Temporarily explicitly install a version of SQLAlchemy
that works (can remove later once Poetry fixes this). Anyways, I am
not using any SQLAlchemy features that I know of.

See: https://github.com/python-poetry/poetry/issues/4402
2021-09-06 21:01:09 +03:00
11ddde3327 data/test.csv: Update mojibake example
All checks were successful
continuous-integration/drone/push Build is passing
I was trying to find where I got this one and it seems to have been
the other way around. Doesn't matter here only that I was curious.
2021-08-19 15:48:41 +03:00
a347878d43 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-08-12 21:49:36 +03:00
a89bc331f0 poetry.lock: Run poetry update
Lots of minor dependencies updates. All tests still passing with
pytest.
2021-08-12 21:47:46 +03:00
af3493c724 CITATION.cff: Remove YAML formatting
All checks were successful
continuous-integration/drone/push Build is passing
GitHub says it can't parse my CITATION.cff file. The example in the
docs shows version 1.2.0 also, I wonder if that's relevant.

See: https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
2021-07-28 21:23:30 +03:00
52644bf83e Add CITATION.cff
Created with the cffinit tool:

https://citation-file-format.github.io/cff-initializer-javascript/
2021-07-28 21:11:11 +03:00
c8f5539d21 Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-07-06 15:47:44 +03:00
382d0d6aed Run poetry update 2021-07-06 15:37:57 +03:00
b8f4be9ebb pyproject.toml: Update pytest-clarity and black
These seem to have much newer versions that didn't get updated in
this project due to the version pinning selector I was using with
poetry.

In the case of pytest-clarity the previous version was 0.3.1 and
the version selector was a caret (^), which will never update the
left-most (major) number. Now they seem to be on 1.x.x so it will
be OK in the future.

In the case of black, they use weird numbering so it's anyone's
guess how this will work! Luckily it's only used for linting and
formatting.
2021-07-06 15:30:41 +03:00
4e2eab68b0 Update requests-cache
Apparently we were stuck on an older version of requests-cache due
to the fact that we were using the caret, which will never update
the left-most (major) version. Upstream requests-cache is currently
version 0.6.4, and there seems to have been some changes to the API.
2021-07-06 15:24:39 +03:00
55165cb4ce Update requirements
All checks were successful
continuous-integration/drone/push Build is passing
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have their versions pinned with ==.
2021-06-14 12:52:47 +03:00
93d3eabfba poetry.lock: Run poetry update 2021-06-14 12:52:28 +03:00
a8fe623f4c csv_metadata_quality/check.py: Remove unnecessary pass
All checks were successful
continuous-integration/drone/push Build is passing
LGTM warned that these pass statements are not necessary.

See: https://lgtm.com/rules/910088/
2021-04-20 08:20:13 +03:00
dbc0437d59 CHANGELOG.md: Add note about Python deps
All checks were successful
continuous-integration/drone/push Build is passing
2021-04-14 16:16:02 +03:00
96ce1daa90 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have
their versions pinned with ==.
2021-04-14 16:15:28 +03:00
3adb52d7c0 poetry.lock: Run poetry update 2021-04-14 16:14:37 +03:00
f958d1879f poetry.lock: Run poetry update
All checks were successful
continuous-integration/drone/push Build is passing
2021-04-02 16:19:16 +03:00
bd8943f36a csv_metadata_quality/app.py: Don't crash if fields are missing
All checks were successful
continuous-integration/drone/push Build is passing
We don't need to crash if someone feeds us a CSV file that is miss-
ing commont DSpace fields like title, type, and subject.
2021-03-21 19:47:29 +02:00
28f9026286 README.md: Minor edit
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-19 16:26:31 +02:00
cfe09f7126 Add SPDX short license identifier to all Python files
See: https://spdx.github.io/spdx-spec/appendix-V-using-SPDX-short-identifiers-in-source-files/
2021-03-19 16:04:40 +02:00
8eddb76aab Bump version to 0.4.8-dev
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-19 11:53:56 +02:00
a04dbc50db Add notes about checking and fixing mojibake 2021-03-19 11:48:27 +02:00
28335ed159 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have
their versions pinned with ==.
2021-03-19 10:29:15 +02:00
773a0a2695 poetry.lock: Run poetry update 2021-03-19 10:28:55 +02:00
39a4b1a487 Add mojibake to data/test.csv and tests 2021-03-19 10:28:33 +02:00
898bb412c3 Add checks and unsafe fixes for mojibake
This detects whether text has likely been encoded in one encoding
and decoded in another, perhaps multiple times. This often results
in display of "mojibake" characters.

For example, a file encoded in UTF-8 is opened as CP-1252 (Windows
Latin codepage) in Microsoft Excel, and saved again as UTF-8. You
will see strings like this in the resulting file:

    - CIAT Publicaçao
    - CIAT Publicación

The correct version of these in UTF-8 would be:

    - CIAT Publicaçao
    - CIAT Publicación

I use a code snippet from Martijn Pieters on StackOverflow to de-
tect whether a string is "weird" as determined by the excellent
"fixes text for you" (ftfy) Python library, then check if a weird
string encodes as CP-1252 or not. If so, I can try to fix it.

See: https://stackoverflow.com/questions/29071995/identify-garbage-unicode-string-using-python
2021-03-19 10:22:21 +02:00
e92ec5d371 README.md: Add note about duplicate checking
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-17 10:12:03 +02:00
f816e17fe7 Version 0.4.7
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-17 10:00:34 +02:00
9061c7c79b setup.py: Remove beta tag
I think this is only used by pypi.org?
2021-03-17 10:00:09 +02:00
661d05b977 Update requirements
Generated with poetry export:

    $ poetry export --without-hashes -f requirements.txt > requirements.txt
    $ poetry export --without-hashes --dev -f requirements.txt > requirements-dev.txt

I am trying `--without-hashes` to work around an error on pip install
when running in CI:

    ERROR: In --require-hashes mode, all requirements must have
their versions pinned with ==.
2021-03-17 09:58:35 +02:00
652b7ea98c CHANGELOG.md: Add note about poetry dependencies 2021-03-17 09:58:02 +02:00
65da6e9b05 poetry.lock: Run pipenv update 2021-03-17 09:57:31 +02:00
a313b7527a CHANGELOG.md: Add note about duplicate items 2021-03-17 09:55:07 +02:00
51ee370697 data/test.csv: Add duplicate item 2021-03-17 09:54:14 +02:00
e8422bfa74 tests/test_check.py: Add test for duplicate items 2021-03-17 09:54:02 +02:00
9f2dc0a0f5 Add support for detecting duplicate items
This uses the title, type, and date issued as a sort of "key" when
determining if an item already exists in the data set.
2021-03-17 09:53:07 +02:00
14010896a5 csv_metadata_quality/experimental.py: Move all imports to top of file
All checks were successful
continuous-integration/drone/push Build is passing
PEP8 recommends keeping imports at the top of the file. Also, I had
to re-work the issn/isbn so they didn't conflict with the functions
in check.py (flake8 warned about them being redefined).

Imports sorted with isort.

See: https://www.python.org/dev/peps/pep-0008/#imports
2021-03-16 16:13:34 +02:00
ab3af2ec62 csv_metadata_quality/check.py: Reformat with black 2021-03-16 16:12:33 +02:00
1aa2084230 CHANGELOG.md: Add note about checks 2021-03-16 16:11:24 +02:00
330a7b7b9c Don't unnecessarily rewrite DataFrames for checks
By using df[column] = df[column].apply(check...) we were re-writing
the DataFrame every time we returned from a check. We don't actuall
y need to return a value at all, as the point of checks is to print
a warning to the screen. In Python a "return" statement without a v
ariable returns None.

I haven't measured the impact of this, but I assume it will mean we
are faster and use less memory.
2021-03-16 16:04:19 +02:00
9a5e3fd6ef README.md: Add TODO about detecting duplicates 2021-03-16 14:03:26 +02:00
ed084da08c CHANGELOG.md: Add note about multi-value separators
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-14 21:04:19 +02:00
10612cf891 Remove checks for invalid multi-value separators
Now that I no longer treat the fix for these as "unsafe" I don't a
ctually need to check for them—I can just fix them when I see them.
2021-03-14 21:01:21 +02:00
3656e9f976 Update CI workflows to use DCTERMS instead of DC
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-14 15:52:51 +02:00
c9c277f8df csv_metadata_quality/app.py: Update help text
All checks were successful
continuous-integration/drone/push Build is passing
Use DCTERMS fields where possible.
2021-03-14 10:52:58 +02:00
fb35afd937 CHANGELOG.md: Add note about requests cache 2021-03-14 09:13:51 +02:00
0e9176f0a6 csv_metadata_quality/check.py: requests cache
Allow overriding the directory for the requests cache. In the case
of csv-metadata-quality-web, which currently runs on Google's App
Engine, we can only write to /tmp.
2021-03-14 09:07:35 +02:00
1008acf35e Always fix invalid multi-value separators
All checks were successful
continuous-integration/drone/push Build is passing
This is no longer class-ified as "unsafe" as I have yet to see a
case where this was intentional, and it always causes issues when
you import the data in a DSpace repository.
2021-03-13 12:59:45 +02:00
f00a07e2cd README.md: Reorganize unsafe functionality
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-13 11:56:52 +02:00
46098861ed poetry.lock: Run poetry update
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-11 22:45:32 +02:00
fa84cfa440 Bump version to 0.4.6-dev 2021-03-11 22:44:36 +02:00
6cc1401f88 pyproject.toml: Minimum Python is technically 3.7.1
All checks were successful
continuous-integration/drone/push Build is passing
See: https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.2.0.html
2021-03-11 13:41:58 +02:00
ad2cda8a41 README.md: Add note about SPDX license identifiers
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-11 12:21:34 +02:00
dc6920802e .github/workflows/python-app.yml: Use Python 3.9
I now use this version in my development environment. Eventually I
should add a matrix of versions to use, but I don't know the GitHub
Actions syntax well enough yet.
2021-03-11 12:17:57 +02:00
6ca449d8ed README.md: Update note about Python 3.8 to 3.8+
Currently the lower bound on Python version support is 3.7 because
of Pandas 1.2.0 requiring it, but I use 3.9 on my development box.
2021-03-11 12:16:07 +02:00
20 changed files with 1607 additions and 665 deletions

View File

@ -1,3 +1,20 @@
---
kind: pipeline
type: docker
name: python310
steps:
- name: test
image: python:3.10-slim
commands:
- id
- python -V
- apt update && apt install -y gcc g++ libicu-dev pkg-config
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
---
kind: pipeline
type: docker
@ -13,7 +30,7 @@ steps:
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dc.subject,cg.coverage.country
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
---
kind: pipeline
@ -30,7 +47,7 @@ steps:
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dc.subject,cg.coverage.country
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
---
kind: pipeline
@ -47,6 +64,6 @@ steps:
- pip install -r requirements-dev.txt
- pytest
- python setup.py install
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dc.subject,cg.coverage.country
- csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country
# vim: ts=2 sw=2 et

View File

@ -16,10 +16,10 @@ jobs:
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.8
- name: Set up Python 3.9
uses: actions/setup-python@v2
with:
python-version: 3.8
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
@ -38,4 +38,4 @@ jobs:
- name: Test CLI
run: |
python setup.py install
csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dc.subject,cg.coverage.country
csv-metadata-quality -i data/test.csv -o /tmp/test.csv -e -u --agrovoc-fields dcterms.subject,cg.coverage.country

View File

@ -4,6 +4,44 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.5.0] - 2021-12-08
### Added
- Ability to check for, and fix, "mojibake" characters using [ftfy](https://github.com/LuminosoInsight/python-ftfy)
- Ability to check if the item's title exists in the citation
- Ability to check if an item has countries, but no matching regions (only
suggests missing regions if there is a region field in the CSV)
### Updated
- Python dependencies
### Fixed
- Regular expression to match all citation fields (dc.identifier.citation as
well as dcterms.bibliographicCitation) in `experimental.correct_language()`
- Regular expression to match dc.title and dcterms.title, but
ignore dc.title.alternative `check.duplicate_items()`
- Missing field name in `fix.newlines()` output
## [0.4.7] - 2021-03-17
### Changed
- Fixing invalid multi-value separators like `|` and `|||` is no longer class-
ified as "unsafe" as I have yet to see a case where this was intentional
- Not user visible, but now checks only print a warning to the screen instead
of returning a value and re-writing the DataFrame, which should be faster and
use less memory
### Added
- Configurable directory for AGROVOC requests cache (to allow running the web
version from Google App Engine where we can only write to /tmp)
- Ability to check for duplicate items in the data set (uses a combination of
the title, type, and date issued to determine uniqueness)
### Removed
- Checks for invalid and unnecessary multi-value separators because now I fix
them whenever I see them, so there is no need to have checks for them
### Updated
- Run `poetry update` to update project dependencies
## [0.4.6] - 2021-03-11
### Added
- Validation of dcterms.license field against SPDX license identifiers

19
CITATION.cff Normal file
View File

@ -0,0 +1,19 @@
cff-version: "1.1.0"
abstract: "A simple but opinionated metadata quality checker and fixer designed to work with CSVs in the DSpace ecosystem."
authors:
-
affiliation: "International Livestock Research Institute"
family-names: Orth
given-names: "Alan S."
orcid: "https://orcid.org/0000-0002-1735-7458"
date-released: 2019-07-26
doi: "10568/110997"
keywords:
- dspace
- "dublin-core"
- csv
- metadata
license: "GPL-3.0-only"
message: "If you use this software, please cite it using these metadata."
repository-code: "https://github.com/ilri/csv-metadata-quality"
title: "DSpace CSV Metadata Quality Checker"

View File

@ -1,7 +1,14 @@
# DSpace CSV Metadata Quality Checker ![GitHub Actions](https://github.com/ilri/csv-metadata-quality/workflows/Build%20and%20Test/badge.svg) [![Build Status](https://ci.mjanja.ch/api/badges/alanorth/csv-metadata-quality/status.svg)](https://ci.mjanja.ch/alanorth/csv-metadata-quality)
<h1 align="center">DSpace CSV Metadata Quality Checker</h1>
<p align="center">
<a href="https://ci.mjanja.ch/alanorth/csv-metadata-quality"><img alt="Build Status" src="https://ci.mjanja.ch/api/badges/alanorth/csv-metadata-quality/status.svg"></a>
<a href="https://github.com/ilri/csv-metadata-quality/actions"><img alt="Build and Test" src="https://github.com/ilri/csv-metadata-quality/workflows/Build%20and%20Test/badge.svg"></a>
<a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
</p>
A simple, but opinionated metadata quality checker and fixer designed to work with CSVs in the DSpace ecosystem (though it could theoretically work on any CSV that uses Dublin Core fields as columns). The implementation is essentially a pipeline of checks and fixes that begins with splitting multi-value fields on the standard DSpace "||" separator, trimming leading/trailing whitespace, and then proceeding to more specialized cases like ISSNs, ISBNs, languages, unnecessary Unicode, AGROVOC terms, etc.
Requires Python 3.7 or greater (3.8 recommended). CSV and Excel support comes from the [Pandas](https://pandas.pydata.org/) library, though your mileage may vary with Excel because this is much less tested.
Requires Python 3.7.1 or greater (3.8+ recommended). CSV and Excel support comes from the [Pandas](https://pandas.pydata.org/) library, though your mileage may vary with Excel because this is much less tested.
If you use the DSpace CSV metadata quality checker please cite:
@ -13,13 +20,16 @@ If you use the DSpace CSV metadata quality checker please cite:
- Validate languages against ISO 639-1 (alpha2) and ISO 639-3 (alpha3)
- Experimental validation of titles and abstracts against item's Dublin Core language field
- Validate subjects against the AGROVOC REST API (see the `--agrovoc-fields` option)
- Validation of licenses against the list of [SPDX license identifiers](https://spdx.org/licenses)
- Fix leading, trailing, and excessive (ie, more than one) whitespace
- Fix invalid and unnecessary multi-value separators (`|`) using `--unsafe-fixes`
- Fix invalid and unnecessary multi-value separators (`|`)
- Fix problematic newlines (line feeds) using `--unsafe-fixes`
- Perform [Unicode normalization](https://withblue.ink/2019/03/11/why-you-need-to-normalize-unicode-strings.html) on strings using `--unsafe-fixes`
- Remove unnecessary Unicode like [non-breaking spaces](https://en.wikipedia.org/wiki/Non-breaking_space), [replacement characters](https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character), etc
- Check for "suspicious" characters that indicate encoding or copy/paste issues, for example "foreˆt" should be "forêt"
- Check for "mojibake" characters (and attempt to fix with `--unsafe-fixes`)
- Remove duplicate metadata values
- Perform [Unicode normalization](https://withblue.ink/2019/03/11/why-you-need-to-normalize-unicode-strings.html) on strings using `--unsafe-fixes`
- Check for duplicate items, using the title, type, and date issued as an indicator
## Installation
The easiest way to install CSV Metadata Quality is with [poetry](https://python-poetry.org):
@ -54,14 +64,14 @@ To validate and clean a CSV file you must specify input and output files using t
$ csv-metadata-quality -i data/test.csv -o /tmp/test.csv
```
## Unsafe Fixes
You can enable several "unsafe" fixes with the `--unsafe-fixes` option. Currently this will attempt to fix invalid multi-value separators and remove newlines.
### Invalid Multi-Value Separators
This is considered "unsafe" because it is *theoretically* possible for a single `|` character to be used legitimately in a metadata value, though in my experience it is always a typo. For example, if a user mistakenly writes `Kenya|Tanzania` when attempting to indicate two countries, the result will be one metadata value with the literal text `Kenya|Tanzania`. The `--unsafe-fixes` option will correct the invalid multi-value separator so that there are two metadata values, ie `Kenya||Tanzania`.
## Invalid Multi-Value Separators
While it is *theoretically* possible for a single `|` character to be used legitimately in a metadata value, in my experience it is always a typo. For example, if a user mistakenly writes `Kenya|Tanzania` when attempting to indicate two countries, the result will be one metadata value with the literal text `Kenya|Tanzania`. This utility will correct the invalid multi-value separator so that there are two metadata values, ie `Kenya||Tanzania`.
This will also remove unnecessary trailing multi-value separators, for example `Kenya||Tanzania||`.
## Unsafe Fixes
You can enable several "unsafe" fixes with the `--unsafe-fixes` option. Currently this will remove newlines, perform Unicode normalization, and attempt to fix "mojibake" characters.
### Newlines
This is considered "unsafe" because some systems give special importance to vertical space and render it properly. DSpace does not support rendering newlines in its XMLUI and has, at times, suffered from parsing errors that cause the import process to fail if an input file had newlines. The `--unsafe-fixes` option strips Unix line feeds (U+000A).
@ -73,6 +83,14 @@ This is considered "unsafe" because some systems give special importance to vert
Read more about [Unicode normalization](https://withblue.ink/2019/03/11/why-you-need-to-normalize-unicode-strings.html).
### Encoding Issues aka "Mojibake"
[Mojibake](https://en.wikipedia.org/wiki/Mojibake) is a phenomenon that occurs when text is decoded using an unintended character encoding. This usually presents itself in the form of strange, garbled characters in the text. Enabling "unsafe" fixes will attempt to correct these, for example:
- CIAT PublicaçaoCIAT Publicaçao
- CIAT PublicaciónCIAT Publicación
Pay special attention to the output of the script as well as the resulting file to make sure no new issues have been introduced. The ideal way to solve these issues is to avoid it in the first place. See [this guide about opening CSVs in UTF-8 format in Excel](https://www.itg.ias.edu/content/how-import-csv-file-uses-utf-8-character-encoding-0).
## AGROVOC Validation
You can enable validation of metadata values in certain fields against the AGROVOC REST API with the `--agrovoc-fields` option. For example, in addition to agricultural subjects, many countries and regions are also present AGROVOC. Enable this validation by specifying a comma-separated list of fields:
@ -111,10 +129,10 @@ This currently uses the [Python langid](https://github.com/saffsd/langid.py) lib
- Add configurable field validation, like specify a field name and a validation file?
- Perhaps like --validate=field.name,filename
- Add some row-based item sanity checks and fixes:
- Warn if item is Open Access, but missing a filename or URL
- Warn if item is Open Access, but missing a license
- Warn if item has an ISSN but no journal title
- Update journal titles from ISSN
- Warn if item is Open Access, but missing a filename or URL
- Warn if item is Open Access, but missing a license
- Warn if item has an ISSN but no journal title
- Update journal titles from ISSN
## License
This work is licensed under the [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: GPL-3.0-only
from sys import argv
from csv_metadata_quality import app

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: GPL-3.0-only
import argparse
import re
import signal
@ -17,7 +19,7 @@ def parse_args(argv):
parser.add_argument(
"--agrovoc-fields",
"-a",
help="Comma-separated list of fields to validate against AGROVOC, for example: dc.subject,cg.coverage.country",
help="Comma-separated list of fields to validate against AGROVOC, for example: dcterms.subject,cg.coverage.country",
)
parser.add_argument(
"--experimental-checks",
@ -48,7 +50,7 @@ def parse_args(argv):
parser.add_argument(
"--exclude-fields",
"-x",
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dc.identifier.citation",
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dcterms.bibliographicCitation",
)
args = parser.parse_args()
@ -87,7 +89,7 @@ def run(argv):
# Fix: newlines
if args.unsafe_fixes:
df[column] = df[column].apply(fix.newlines)
df[column] = df[column].apply(fix.newlines, field_name=column)
# Fix: missing space after comma. Only run on author and citation
# fields for now, as this problem is mostly an issue in names.
@ -104,17 +106,19 @@ def run(argv):
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Check: invalid and unnecessary multi-value separators
df[column] = df[column].apply(check.separators, field_name=column)
# Check: suspicious characters
df[column] = df[column].apply(check.suspicious_characters, field_name=column)
df[column].apply(check.suspicious_characters, field_name=column)
# Fix: mojibake. If unsafe fixes are not enabled then we only check.
if args.unsafe_fixes:
df[column] = df[column].apply(fix.mojibake, field_name=column)
else:
df[column].apply(check.mojibake, field_name=column)
# Fix: invalid and unnecessary multi-value separators
if args.unsafe_fixes:
df[column] = df[column].apply(fix.separators, field_name=column)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace, field_name=column)
df[column] = df[column].apply(fix.separators, field_name=column)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace, field_name=column)
# Fix: duplicate metadata values
df[column] = df[column].apply(fix.duplicates, field_name=column)
@ -124,36 +128,51 @@ def run(argv):
# Identify fields the user wants to validate against AGROVOC
for field in args.agrovoc_fields.split(","):
if column == field:
df[column] = df[column].apply(check.agrovoc, field_name=column)
df[column].apply(check.agrovoc, field_name=column)
# Check: invalid language
match = re.match(r"^.*?language.*$", column)
if match is not None:
df[column] = df[column].apply(check.language)
df[column].apply(check.language)
# Check: invalid ISSN
match = re.match(r"^.*?issn.*$", column)
if match is not None:
df[column] = df[column].apply(check.issn)
df[column].apply(check.issn)
# Check: invalid ISBN
match = re.match(r"^.*?isbn.*$", column)
if match is not None:
df[column] = df[column].apply(check.isbn)
df[column].apply(check.isbn)
# Check: invalid date
match = re.match(r"^.*?(date|dcterms\.issued).*$", column)
if match is not None:
df[column] = df[column].apply(check.date, field_name=column)
df[column].apply(check.date, field_name=column)
# Check: filename extension
if column == "filename":
df[column] = df[column].apply(check.filename_extension)
df[column].apply(check.filename_extension)
# Check: SPDX license identifier
match = re.match(r"dcterms\.license.*$", column)
if match is not None:
df[column] = df[column].apply(check.spdx_license_identifier)
df[column].apply(check.spdx_license_identifier)
### End individual column checks ###
# Check: duplicate items
# We extract just the title, type, and date issued columns to analyze
try:
duplicates_df = df.filter(
regex=r"dcterms\.title|dc\.title|dcterms\.type|dc\.type|dcterms\.issued|dc\.date\.issued"
)
check.duplicate_items(duplicates_df)
# Delete the temporary duplicates DataFrame
del duplicates_df
except IndexError:
pass
##
# Perform some checks on rows so we can consider items as a whole rather
@ -166,11 +185,22 @@ def run(argv):
# column. For now it will have to do.
##
if args.experimental_checks:
# Transpose the DataFrame so we can consider each row as a column
df_transposed = df.T
# Transpose the DataFrame so we can consider each row as a column
df_transposed = df.T
for column in df_transposed.columns:
# Remember, here a "column" is an item (previously row). Perhaps I
# should rename column in this for loop...
for column in df_transposed.columns:
# Check: citation DOI
check.citation_doi(df_transposed[column])
# Check: title in citation
check.title_in_citation(df_transposed[column])
# Check: countries match regions
check.countries_match_regions(df_transposed[column])
if args.experimental_checks:
experimental.correct_language(df_transposed[column])
# Write

View File

@ -1,6 +1,10 @@
# SPDX-License-Identifier: GPL-3.0-only
import os
import re
from datetime import datetime, timedelta
import country_converter as coco
import pandas as pd
import requests
import requests_cache
@ -10,6 +14,8 @@ from pycountry import languages
from stdnum import isbn as stdnum_isbn
from stdnum import issn as stdnum_issn
from csv_metadata_quality.util import is_mojibake
def issn(field):
"""Check if an ISSN is valid.
@ -31,7 +37,7 @@ def issn(field):
if not stdnum_issn.is_valid(value):
print(f"{Fore.RED}Invalid ISSN: {Fore.RESET}{value}")
return field
return
def isbn(field):
@ -54,43 +60,7 @@ def isbn(field):
if not stdnum_isbn.is_valid(value):
print(f"{Fore.RED}Invalid ISBN: {Fore.RESET}{value}")
return field
def separators(field, field_name):
"""Check for invalid and unnecessary multi-value separators, for example:
value|value
value|||value
value||value||
Prints the field with the invalid multi-value separator.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Try to split multi-value field on "||" separator
for value in field.split("||"):
# Check if the current value is blank
if value == "":
print(
f"{Fore.RED}Unnecessary multi-value separator ({field_name}): {Fore.RESET}{field}"
)
continue
# After splitting, see if there are any remaining "|" characters
match = re.findall(r"^.*?\|.*$", value)
# Check if there was a match
if match:
print(
f"{Fore.RED}Invalid multi-value separator ({field_name}): {Fore.RESET}{field}"
)
return field
return
def date(field, field_name):
@ -118,13 +88,13 @@ def date(field, field_name):
f"{Fore.RED}Multiple dates not allowed ({field_name}): {Fore.RESET}{field}"
)
return field
return
try:
# Check if date is valid YYYY format
datetime.strptime(field, "%Y")
return field
return
except ValueError:
pass
@ -132,7 +102,7 @@ def date(field, field_name):
# Check if date is valid YYYY-MM format
datetime.strptime(field, "%Y-%m")
return field
return
except ValueError:
pass
@ -140,7 +110,7 @@ def date(field, field_name):
# Check if date is valid YYYY-MM-DD format
datetime.strptime(field, "%Y-%m-%d")
return field
return
except ValueError:
pass
@ -148,11 +118,11 @@ def date(field, field_name):
# Check if date is valid YYYY-MM-DDTHH:MM:SSZ format
datetime.strptime(field, "%Y-%m-%dT%H:%M:%SZ")
return field
return
except ValueError:
print(f"{Fore.RED}Invalid date ({field_name}): {Fore.RESET}{field}")
return field
return
def suspicious_characters(field, field_name):
@ -186,7 +156,7 @@ def suspicious_characters(field, field_name):
suspicious_character_msg = f"{Fore.YELLOW}Suspicious character ({field_name}): {Fore.RESET}{field_subset}"
print(f"{suspicious_character_msg:1.80}")
return field
return
def language(field):
@ -209,17 +179,13 @@ def language(field):
if len(value) == 2:
if not languages.get(alpha_2=value):
print(f"{Fore.RED}Invalid ISO 639-1 language: {Fore.RESET}{value}")
pass
elif len(value) == 3:
if not languages.get(alpha_3=value):
print(f"{Fore.RED}Invalid ISO 639-3 language: {Fore.RESET}{value}")
pass
else:
print(f"{Fore.RED}Invalid language: {Fore.RESET}{value}")
return field
return
def agrovoc(field, field_name):
@ -242,10 +208,16 @@ def agrovoc(field, field_name):
# enable transparent request cache with thirty days expiry
expire_after = timedelta(days=30)
requests_cache.install_cache("agrovoc-response-cache", expire_after=expire_after)
# Allow overriding the location of the requests cache, just in case we are
# running in an environment where we can't write to the current working di-
# rectory (for example from csv-metadata-quality-web).
REQUESTS_CACHE_DIR = os.environ.get("REQUESTS_CACHE_DIR", ".")
requests_cache.install_cache(
f"{REQUESTS_CACHE_DIR}/agrovoc-response-cache", expire_after=expire_after
)
# prune old cache entries
requests_cache.core.remove_expired_responses()
requests_cache.remove_expired_responses()
# Try to split multi-value field on "||" separator
for value in field.split("||"):
@ -261,7 +233,7 @@ def agrovoc(field, field_name):
if len(data["results"]) == 0:
print(f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{value}")
return field
return
def filename_extension(field):
@ -312,7 +284,7 @@ def filename_extension(field):
if filename_extension_match is False:
print(f"{Fore.YELLOW}Filename with uncommon extension: {Fore.RESET}{value}")
return field
return
def spdx_license_identifier(field):
@ -330,6 +302,220 @@ def spdx_license_identifier(field):
if value not in spdx_license_list.LICENSES:
print(f"{Fore.YELLOW}Non-SPDX license identifier: {Fore.RESET}{value}")
pass
return
return field
def duplicate_items(df):
"""Attempt to identify duplicate items.
First we check the total number of titles and compare it with the number of
unique titles. If there are less unique titles than total titles we expand
the search by creating a key (of sorts) for each item that includes their
title, type, and date issued, and compare it with all the others. If there
are multiple occurrences of the same title, type, date string then it's a
very good indicator that the items are duplicates.
"""
# Extract the names of the title, type, and date issued columns so we can
# reference them later. First we filter columns by likely patterns, then
# we extract the name from the first item of the resulting object, ie:
#
# Index(['dcterms.title[en_US]'], dtype='object')
#
# But, we need to consider that dc.title.alternative might come before the
# main title in the CSV, so use a negative lookahead to eliminate that.
#
# See: https://regex101.com/r/elyXkW/1
title_column_name = df.filter(
regex=r"^(dc|dcterms)\.title(?!\.alternative).*$"
).columns[0]
type_column_name = df.filter(regex=r"^(dcterms\.type|dc\.type).*$").columns[0]
date_column_name = df.filter(
regex=r"^(dcterms\.issued|dc\.date\.accessioned).*$"
).columns[0]
items_count_total = df[title_column_name].count()
items_count_unique = df[title_column_name].nunique()
if items_count_unique < items_count_total:
# Create a list to hold our items while we check for duplicates
items = list()
for index, row in df.iterrows():
item_title_type_date = f"{row[title_column_name]}{row[type_column_name]}{row[date_column_name]}"
if item_title_type_date in items:
print(
f"{Fore.YELLOW}Possible duplicate ({title_column_name}): {Fore.RESET}{row[title_column_name]}"
)
else:
items.append(item_title_type_date)
def mojibake(field, field_name):
"""Check for mojibake (text that was encoded in one encoding and decoded in
in another, perhaps multiple times). See util.py.
Prints the string if it contains suspected mojibake.
"""
# Skip fields with missing values
if pd.isna(field):
return
if is_mojibake(field):
print(
f"{Fore.YELLOW}Possible encoding issue ({field_name}): {Fore.RESET}{field}"
)
return
def citation_doi(row):
"""Check for the scenario where an item has a DOI listed in its citation,
but does not have a cg.identifier.doi field.
Function prints a warning if the DOI field is missing, but there is a DOI
in the citation.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
citation = ""
# Iterate over the labels of the current row's values to check if a DOI
# exists. If not, then we extract the citation to see if there is a DOI
# listed there.
for label in row.axes[0]:
# Skip fields with missing values
if pd.isna(row[label]):
continue
# If a DOI field exists we don't need to check the citation
match = re.match(r"^.*?doi.*$", label)
if match is not None:
return
# Get the name of the citation field
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None:
citation = row[label]
if citation != "":
# Check the citation for "doi: 10.1186/1743-422X-9-218"
doi_match1 = re.match(r"^.*?doi:\s.*$", citation)
# Check the citation for a DOI URL (doi.org, dx.doi.org, etc)
doi_match2 = re.match(r"^.*?doi\.org.*$", citation)
if doi_match1 is not None or doi_match2 is not None:
print(
f"{Fore.YELLOW}DOI in citation, but missing a DOI field: {Fore.RESET}{citation}"
)
return
def title_in_citation(row):
"""Check for the scenario where an item's title is missing from its cita-
tion. This could mean that it is missing entirely, or perhaps just exists
in a different format (whitespace, accents, etc).
Function prints a warning if the title does not appear in the citation.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
title = ""
citation = ""
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
for label in row.axes[0]:
# Skip fields with missing values
if pd.isna(row[label]):
continue
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None:
title = row[label]
# Find the name of the citation column
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None:
citation = row[label]
if citation != "":
if title not in citation:
print(f"{Fore.YELLOW}Title is not present in citation: {Fore.RESET}{title}")
return
def countries_match_regions(row):
"""Check for the scenario where an item has country coverage metadata, but
does not have the corresponding region metadata. For example, an item that
has country coverage "Kenya" should also have region "Eastern Africa" acc-
ording to the UN M.49 classification scheme.
See: https://unstats.un.org/unsd/methodology/m49/
Function prints a warning if the appropriate region is not present.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
country_column_name = ""
region_column_name = ""
title_column_name = ""
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
for label in row.axes[0]:
# Find the name of the country column
match = re.match(r"^.*?country.*$", label)
if match is not None:
country_column_name = label
# Find the name of the region column
match = re.match(r"^.*?region.*$", label)
if match is not None:
region_column_name = label
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None:
title_column_name = label
# Make sure we found the country and region columns
if country_column_name != "" and region_column_name != "":
# If we don't have any countries then we should return early before
# suggesting regions.
if row[country_column_name] is not None:
countries = row[country_column_name].split("||")
else:
return
if row[region_column_name] is not None:
regions = row[region_column_name].split("||")
else:
regions = list()
# An empty list for our regions so we can keep track for all countries
missing_regions = list()
for country in countries:
# Look up the UN M.49 regions for this country code. CoCo seems to
# only list the direct region, ie Western Africa, rather than all
# the parent regions ("Sub-Saharan Africa", "Africa", "World")
un_region = coco.convert(names=country, to="UNRegion")
if un_region not in regions:
if un_region not in missing_regions:
missing_regions.append(un_region)
if len(missing_regions) > 0:
for missing_region in missing_regions:
print(
f"{Fore.YELLOW}Missing region ({missing_region}): {Fore.RESET}{row[title_column_name]}"
)
return

View File

@ -1,5 +1,11 @@
# SPDX-License-Identifier: GPL-3.0-only
import re
import langid
import pandas as pd
from colorama import Fore
from pycountry import languages
def correct_language(row):
@ -11,11 +17,6 @@ def correct_language(row):
language and returns the value in the language field if it does match.
"""
import re
import langid
from pycountry import languages
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
language = ""
@ -51,7 +52,7 @@ def correct_language(row):
sample_strings.append(row[label])
# Extract citation if it is present
match = re.match(r"^.*?citation.*$", label)
match = re.match(r"^.*?[cC]itation.*$", label)
if match is not None:
sample_strings.append(row[label])
@ -94,4 +95,4 @@ def correct_language(row):
)
else:
return language
return

View File

@ -1,10 +1,13 @@
# SPDX-License-Identifier: GPL-3.0-only
import re
from unicodedata import normalize
import pandas as pd
from colorama import Fore
from ftfy import fix_text
from csv_metadata_quality.util import is_nfc
from csv_metadata_quality.util import is_mojibake, is_nfc
def whitespace(field, field_name):
@ -177,7 +180,7 @@ def duplicates(field, field_name):
return new_field
def newlines(field):
def newlines(field, field_name):
"""Fix newlines.
Single metadata values should not span multiple lines because this is not
@ -202,7 +205,7 @@ def newlines(field):
match = re.findall(r"\n", field)
if match:
print(f"{Fore.GREEN}Removing newline: {Fore.RESET}{field}")
print(f"{Fore.GREEN}Removing newline ({field_name}): {Fore.RESET}{field}")
field = field.replace("\n", "")
return field
@ -253,3 +256,22 @@ def normalize_unicode(field, field_name):
field = normalize("NFC", field)
return field
def mojibake(field, field_name):
"""Attempts to fix mojibake (text that was encoded in one encoding and deco-
ded in another, perhaps multiple times). See util.py.
Return fixed string.
"""
# Skip fields with missing values
if pd.isna(field):
return field
if is_mojibake(field):
print(f"{Fore.GREEN}Fixing encoding issue ({field_name}): {Fore.RESET}{field}")
return fix_text(field)
else:
return field

View File

@ -1,3 +1,8 @@
# SPDX-License-Identifier: GPL-3.0-only
from ftfy.badness import sequence_weirdness
def is_nfc(field):
"""Utility function to check whether a string is using normalized Unicode.
Python's built-in unicodedata library has the is_normalized() function, but
@ -12,3 +17,35 @@ def is_nfc(field):
from unicodedata import normalize
return field == normalize("NFC", field)
def is_mojibake(field):
"""Determines whether a string contains mojibake.
We commonly deal with CSV files that were *encoded* in UTF-8, but decoded
as something else like CP-1252 (Windows Latin). This manifests in the form
of "mojibake", for example:
- CIAT Publicaçao
- CIAT Publicación
This uses the excellent "fixes text for you" (ftfy) library to determine
whether a string contains characters that have been encoded in one encoding
and decoded in another.
Inspired by this code snippet from Martijn Pieters on StackOverflow:
https://stackoverflow.com/questions/29071995/identify-garbage-unicode-string-using-python
Return boolean.
"""
if not sequence_weirdness(field):
# Nothing weird, should be okay
return False
try:
field.encode("sloppy-windows-1252")
except UnicodeEncodeError:
# Not CP-1252 encodable, probably fine
return False
else:
# Encodable as CP-1252, Mojibake alert level high
return True

View File

@ -1 +1,3 @@
VERSION = "0.4.6"
# SPDX-License-Identifier: GPL-3.0-only
VERSION = "0.5.0"

View File

@ -1,32 +1,38 @@
dc.title,dcterms.issued,dc.identifier.issn,dc.identifier.isbn,dcterms.language,dcterms.subject,cg.coverage.country,filename,dcterms.license
Leading space,2019-07-29,,,,,,,
Trailing space ,2019-07-29,,,,,,,
Excessive space,2019-07-29,,,,,,,
Miscellaenous ||whitespace | issues ,2019-07-29,,,,,,,
Duplicate||Duplicate,2019-07-29,,,,,,,
Invalid ISSN,2019-07-29,2321-2302,,,,,,
Invalid ISBN,2019-07-29,,978-0-306-40615-6,,,,,
Multiple valid ISSNs,2019-07-29,0378-5955||0024-9319,,,,,,
Multiple valid ISBNs,2019-07-29,,99921-58-10-7||978-0-306-40615-7,,,,,
Invalid date,2019-07-260,,,,,,,
Multiple dates,2019-07-26||2019-01-10,,,,,,,
Invalid multi-value separator,2019-07-29,0378-5955|0024-9319,,,,,,
Unnecessary Unicode,2019-07-29,,,,,,,
Suspicious character||foreˆt,2019-07-29,,,,,,,
Invalid ISO 639-1 (alpha 2) language,2019-07-29,,,jp,,,,
Invalid ISO 639-3 (alpha 3) language,2019-07-29,,,chi,,,,
Invalid language,2019-07-29,,,Span,,,,
Invalid AGROVOC subject,2019-07-29,,,,FOREST,,,
dc.title,dcterms.issued,dc.identifier.issn,dc.identifier.isbn,dcterms.language,dcterms.subject,cg.coverage.country,filename,dcterms.license,dcterms.type,dcterms.bibliographicCitation,cg.identifier.doi,cg.coverage.region
Leading space,2019-07-29,,,,,,,,,,,
Trailing space ,2019-07-29,,,,,,,,,,,
Excessive space,2019-07-29,,,,,,,,,,,
Miscellaenous ||whitespace | issues ,2019-07-29,,,,,,,,,,,
Duplicate||Duplicate,2019-07-29,,,,,,,,,,,
Invalid ISSN,2019-07-29,2321-2302,,,,,,,,,,
Invalid ISBN,2019-07-29,,978-0-306-40615-6,,,,,,,,,
Multiple valid ISSNs,2019-07-29,0378-5955||0024-9319,,,,,,,,,,
Multiple valid ISBNs,2019-07-29,,99921-58-10-7||978-0-306-40615-7,,,,,,,,,
Invalid date,2019-07-260,,,,,,,,,,,
Multiple dates,2019-07-26||2019-01-10,,,,,,,,,,,
Invalid multi-value separator,2019-07-29,0378-5955|0024-9319,,,,,,,,,,
Unnecessary Unicode,2019-07-29,,,,,,,,,,,
Suspicious character||foreˆt,2019-07-29,,,,,,,,,,,
Invalid ISO 639-1 (alpha 2) language,2019-07-29,,,jp,,,,,,,,
Invalid ISO 639-3 (alpha 3) language,2019-07-29,,,chi,,,,,,,,
Invalid language,2019-07-29,,,Span,,,,,,,,
Invalid AGROVOC subject,2019-07-29,,,,FOREST,,,,,,,
Newline (LF),2019-07-30,,,,"TANZA
NIA",,,
Missing date,,,,,,,,
Invalid country,2019-08-01,,,,,KENYAA,,
Uncommon filename extension,2019-08-10,,,,,,file.pdf.lck,
Unneccesary unicode (U+002D + U+00AD),2019-08-10,,978-­92-­9043-­823-­6,,,,,
"Missing space,after comma",2019-08-27,,,,,,,
Incorrect ISO 639-1 language,2019-09-26,,,es,,,,
Incorrect ISO 639-3 language,2019-09-26,,,spa,,,,
Composéd Unicode,2020-01-14,,,,,,,
Decomposéd Unicode,2020-01-14,,,,,,,
Unnecessary multi-value separator,2021-01-03,0378-5955||,,,,,,
Invalid SPDX license identifier,2021-03-11,,,,,,,CC-BY
NIA",,,,,,,
Missing date,,,,,,,,,,,,
Invalid country,2019-08-01,,,,,KENYAA,,,,,,
Uncommon filename extension,2019-08-10,,,,,,file.pdf.lck,,,,,
Unneccesary unicode (U+002D + U+00AD),2019-08-10,,978-­92-­9043-­823-­6,,,,,,,,,
"Missing space,after comma",2019-08-27,,,,,,,,,,,
Incorrect ISO 639-1 language,2019-09-26,,,es,,,,,,,,
Incorrect ISO 639-3 language,2019-09-26,,,spa,,,,,,,,
Composéd Unicode,2020-01-14,,,,,,,,,,,
Decomposéd Unicode,2020-01-14,,,,,,,,,,,
Unnecessary multi-value separator,2021-01-03,0378-5955||,,,,,,,,,,
Invalid SPDX license identifier,2021-03-11,,,,,,,CC-BY,,,,
Duplicate Title,2021-03-17,,,,,,,,Report,,,
Duplicate Title,2021-03-17,,,,,,,,Report,,,
Mojibake,2021-03-18,,,,Publicaçao CIAT,,,,Report,,,
"DOI in citation, but missing cg.identifier.doi",2021-10-06,,,,,,,,,"Orth, A. 2021. DOI in citation, but missing cg.identifier.doi. doi: 10.1186/1743-422X-9-218",,
Title missing from citation,2021-12-05,,,,,,,,,"Orth, A. 2021. Title missing f rom citation.",,
Country missing region,2021-12-08,,,,,Kenya,,,,,,

1 dc.title dcterms.issued dc.identifier.issn dc.identifier.isbn dcterms.language dcterms.subject cg.coverage.country filename dcterms.license dcterms.type dcterms.bibliographicCitation cg.identifier.doi cg.coverage.region
2 Leading space 2019-07-29
3 Trailing space 2019-07-29
4 Excessive space 2019-07-29
5 Miscellaenous ||whitespace | issues 2019-07-29
6 Duplicate||Duplicate 2019-07-29
7 Invalid ISSN 2019-07-29 2321-2302
8 Invalid ISBN 2019-07-29 978-0-306-40615-6
9 Multiple valid ISSNs 2019-07-29 0378-5955||0024-9319
10 Multiple valid ISBNs 2019-07-29 99921-58-10-7||978-0-306-40615-7
11 Invalid date 2019-07-260
12 Multiple dates 2019-07-26||2019-01-10
13 Invalid multi-value separator 2019-07-29 0378-5955|0024-9319
14 Unnecessary Unicode​ 2019-07-29
15 Suspicious character||foreˆt 2019-07-29
16 Invalid ISO 639-1 (alpha 2) language 2019-07-29 jp
17 Invalid ISO 639-3 (alpha 3) language 2019-07-29 chi
18 Invalid language 2019-07-29 Span
19 Invalid AGROVOC subject 2019-07-29 FOREST
20 Newline (LF) 2019-07-30 TANZA NIA
21 Missing date
22 Invalid country 2019-08-01 KENYAA
23 Uncommon filename extension 2019-08-10 file.pdf.lck
24 Unneccesary unicode (U+002D + U+00AD) 2019-08-10 978-­92-­9043-­823-­6
25 Missing space,after comma 2019-08-27
26 Incorrect ISO 639-1 language 2019-09-26 es
27 Incorrect ISO 639-3 language 2019-09-26 spa
28 Composéd Unicode 2020-01-14
29 Decomposéd Unicode 2020-01-14
30 Unnecessary multi-value separator 2021-01-03 0378-5955||
31 Invalid SPDX license identifier 2021-03-11 CC-BY
32 Duplicate Title 2021-03-17 Report
33 Duplicate Title 2021-03-17 Report
34 Mojibake 2021-03-18 Publicaçao CIAT Report
35 DOI in citation, but missing cg.identifier.doi 2021-10-06 Orth, A. 2021. DOI in citation, but missing cg.identifier.doi. doi: 10.1186/1743-422X-9-218
36 Title missing from citation 2021-12-05 Orth, A. 2021. Title missing f rom citation.
37 Country missing region 2021-12-08 Kenya
38

1022
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "csv-metadata-quality"
version = "0.4.6"
version = "0.5.0"
description="A simple, but opinionated CSV quality checking and fixing pipeline for CSVs in the DSpace ecosystem."
authors = ["Alan Orth <alan.orth@gmail.com>"]
license="GPL-3.0-only"
@ -11,23 +11,26 @@ homepage = "https://github.com/ilri/csv-metadata-quality"
csv-metadata-quality = 'csv_metadata_quality.__main__:main'
[tool.poetry.dependencies]
python = "^3.8"
python = "^3.7.1"
pandas = "^1.0.4"
python-stdnum = "^1.13"
xlrd = "^1.2.0"
requests = "^2.23.0"
requests-cache = "^0.5.2"
requests-cache = "~0.6.4"
pycountry = "^19.8.18"
langid = "^1.1.6"
colorama = "^0.4.4"
spdx-license-list = "^0.5.2"
ftfy = "^5.9"
SQLAlchemy = ">=1.3.3,<1.4.23"
country-converter = "^0.7.4"
[tool.poetry.dev-dependencies]
pytest = "^6.1.1"
ipython = { version = "^7.18.1", python = "^3.7" }
flake8 = "^3.8.4"
pytest-clarity = "^0.3.0-alpha.0"
black = "20.8b1"
pytest-clarity = "^1.0.1"
black = "^21.6b0"
isort = "^5.5.4"
csvkit = "^1.0.5"

View File

@ -1,72 +1,82 @@
agate-dbf==0.2.2
agate-excel==0.2.3
agate-sql==0.5.5
agate==1.6.2
appdirs==1.4.4; python_version >= "3.6"
agate-excel==0.2.5
agate-sql==0.5.8
agate==1.6.3
appnope==0.1.2; python_version >= "3.7" and python_version < "4.0" and sys_platform == "darwin"
atomicwrites==1.4.0; python_version >= "3.6" and python_full_version < "3.0.0" and sys_platform == "win32" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6") or sys_platform == "win32" and python_version >= "3.6" and python_full_version >= "3.4.0" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6")
attrs==20.3.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
babel==2.9.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
attrs==21.2.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
babel==2.9.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
backcall==0.2.0; python_version >= "3.7" and python_version < "4.0"
black==20.8b1; python_version >= "3.6"
certifi==2020.12.5; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
chardet==4.0.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
click==7.1.2; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
black==21.12b0; python_full_version >= "3.6.2"
certifi==2021.10.8; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6"
charset-normalizer==2.0.9; python_full_version >= "3.6.0" and python_version >= "3.6"
click==8.0.3; python_version >= "3.6" and python_full_version >= "3.6.2"
colorama==0.4.4; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
csvkit==1.0.5
commonmark==0.9.1; python_full_version >= "3.6.2" and python_full_version < "4.0.0" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0")
country-converter==0.7.4
csvkit==1.0.6
dbfread==2.0.7
decorator==4.4.2; python_version >= "3.7" and python_full_version < "3.0.0" and python_version < "4.0" or python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.2.0"
et-xmlfile==1.0.1; python_version >= "3.6"
flake8==3.8.4; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0")
idna==2.10; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
decorator==5.1.0; python_version >= "3.7" and python_version < "4.0"
et-xmlfile==1.1.0; python_version >= "3.6"
flake8==3.9.2; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
ftfy==5.9; python_version >= "3.5"
future==0.18.2; python_version >= "2.6" and python_full_version < "3.0.0" or python_full_version >= "3.3.0"
greenlet==1.1.2; python_version >= "3" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3"
idna==3.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6"
importlib-metadata==4.8.2; python_full_version >= "3.6.2" and python_version < "3.8" and python_version >= "3.6" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6") and (python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6")
iniconfig==1.1.1; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
ipython-genutils==0.2.0; python_version >= "3.7" and python_version < "4.0"
ipython==7.21.0; python_version >= "3.7" and python_version < "4.0"
ipython==7.30.1; python_version >= "3.7" and python_version < "4.0"
isodate==0.6.0
isort==5.7.0; python_version >= "3.6" and python_version < "4.0"
jedi==0.18.0; python_version >= "3.7" and python_version < "4.0"
isort==5.10.1; python_full_version >= "3.6.1" and python_version < "4.0"
itsdangerous==2.0.1; python_version >= "3.6"
jedi==0.18.1; python_version >= "3.7" and python_version < "4.0"
langid==1.1.6
leather==0.3.3
mccabe==0.6.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
mypy-extensions==0.4.3; python_version >= "3.6"
numpy==1.20.1; python_version >= "3.7" and python_full_version >= "3.7.1"
openpyxl==3.0.7; python_version >= "3.6"
packaging==20.9; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
pandas==1.2.3; python_full_version >= "3.7.1"
parsedatetime==2.6
parso==0.8.1; python_version >= "3.7" and python_version < "4.0"
pathspec==0.8.1; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
leather==0.3.4
matplotlib-inline==0.1.3; python_version >= "3.7" and python_version < "4.0"
mccabe==0.6.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
mypy-extensions==0.4.3; python_full_version >= "3.6.2"
numpy==1.21.1
olefile==0.46; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
openpyxl==3.0.9; python_version >= "3.6"
packaging==21.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
pandas==1.3.4; python_full_version >= "3.7.1"
parsedatetime==2.4
parso==0.8.3; python_version >= "3.7" and python_version < "4.0"
pathspec==0.9.0; python_full_version >= "3.6.2"
pexpect==4.8.0; python_version >= "3.7" and python_version < "4.0" and sys_platform != "win32"
pickleshare==0.7.5; python_version >= "3.7" and python_version < "4.0"
pluggy==0.13.1; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
prompt-toolkit==3.0.16; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.1"
platformdirs==2.4.0; python_version >= "3.6" and python_full_version >= "3.6.2"
pluggy==1.0.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
pprintpp==0.4.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
prompt-toolkit==3.0.23; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.2"
ptyprocess==0.7.0; python_version >= "3.7" and python_version < "4.0" and sys_platform != "win32"
py==1.10.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
pycodestyle==2.6.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
py==1.11.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
pycodestyle==2.7.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
pycountry==19.8.18
pyflakes==2.2.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
pygments==2.8.1; python_version >= "3.7" and python_version < "4.0"
pyicu==2.6
pyparsing==2.4.7; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
pytest-clarity==0.3.0a0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0")
pytest==6.2.2; python_version >= "3.6"
python-dateutil==2.8.1; python_full_version >= "3.7.1"
python-slugify==4.0.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
python-stdnum==1.16
pyflakes==2.3.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
pygments==2.10.0; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.2" and python_full_version < "4.0.0" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0")
pyparsing==3.0.6; python_version >= "3.6"
pytest-clarity==1.0.1; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0")
pytest==6.2.5; python_version >= "3.6"
python-dateutil==2.8.2; python_full_version >= "3.7.1"
python-slugify==5.0.2; python_version >= "3.6"
python-stdnum==1.17
pytimeparse==1.1.8
pytz==2021.1; python_full_version >= "3.7.1"
regex==2020.11.13; python_version >= "3.6"
requests-cache==0.5.2
requests==2.25.1; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
six==1.15.0; python_full_version >= "3.7.1"
pytz==2021.3; python_full_version >= "3.7.1"
requests-cache==0.6.4; python_version >= "3.6"
requests==2.26.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0")
rich==10.15.2; python_full_version >= "3.6.2" and python_full_version < "4.0.0" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0")
six==1.16.0; python_full_version >= "3.7.1" and python_version >= "3.6" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.3.0")
spdx-license-list==0.5.2
sqlalchemy==1.3.23; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
termcolor==1.1.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0"
text-unidecode==1.3; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
sqlalchemy==1.4.22; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0")
text-unidecode==1.3; python_version >= "3.6"
toml==0.10.2; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
traitlets==5.0.5; python_version >= "3.7" and python_version < "4.0"
typed-ast==1.4.2; python_version >= "3.6"
typing-extensions==3.7.4.3; python_version >= "3.6"
urllib3==1.26.3; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version < "4"
wcwidth==0.2.5; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.1"
tomli==1.2.2; python_version >= "3.6" and python_full_version >= "3.6.2"
traitlets==5.1.1; python_version >= "3.7" and python_version < "4.0"
typed-ast==1.5.1; python_version < "3.8" and implementation_name == "cpython" and python_full_version >= "3.6.2" and python_version >= "3.6"
typing-extensions==4.0.1
url-normalize==1.4.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6"
urllib3==1.26.7; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version < "4" and python_version >= "3.6"
wcwidth==0.2.5; python_version >= "3.7" and python_version < "4.0" and python_full_version >= "3.6.2"
xlrd==1.2.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0")
zipp==3.6.0; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6"

View File

@ -1,17 +1,201 @@
certifi==2020.12.5; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
chardet==4.0.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
colorama==0.4.4; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
idna==2.10; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
langid==1.1.6
numpy==1.20.1; python_version >= "3.7" and python_full_version >= "3.7.1"
pandas==1.2.3; python_full_version >= "3.7.1"
pycountry==19.8.18
python-dateutil==2.8.1; python_full_version >= "3.7.1"
python-stdnum==1.16
pytz==2021.1; python_full_version >= "3.7.1"
requests-cache==0.5.2
requests==2.25.1; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
six==1.15.0; python_full_version >= "3.7.1"
spdx-license-list==0.5.2
urllib3==1.26.3; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version < "4"
xlrd==1.2.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0")
certifi==2021.10.8; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:d62a0163eb4c2344ac042ab2bdf75399a71a2d8c7d47eac2e2ee91b9d6339569 \
--hash=sha256:78884e7c1d4b00ce3cea67b44566851c4343c120abd683433ce934a68ea58872
charset-normalizer==2.0.9; python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:b0b883e8e874edfdece9c28f314e3dd5badf067342e42fb162203335ae61aa2c \
--hash=sha256:1eecaa09422db5be9e29d7fc65664e6c33bd06f9ced7838578ba40d58bdf3721
colorama==0.4.4; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0") \
--hash=sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2 \
--hash=sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b
country-converter==0.7.4 \
--hash=sha256:0291cc91c4a4efe7f128a11c8c6e4cb761f7fea7cde2517f8677c7c56da334d3
ftfy==5.9; python_version >= "3.5" \
--hash=sha256:8c4fb2863c0b82eae2ab3cf353d9ade268dfbde863d322f78d6a9fd5cefb31e9
greenlet==1.1.2; python_version >= "3" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3" \
--hash=sha256:58df5c2a0e293bf665a51f8a100d3e9956febfbf1d9aaf8c0677cf70218910c6 \
--hash=sha256:aec52725173bd3a7b56fe91bc56eccb26fbdff1386ef123abb63c84c5b43b63a \
--hash=sha256:833e1551925ed51e6b44c800e71e77dacd7e49181fdc9ac9a0bf3714d515785d \
--hash=sha256:aa5b467f15e78b82257319aebc78dd2915e4c1436c3c0d1ad6f53e47ba6e2713 \
--hash=sha256:40b951f601af999a8bf2ce8c71e8aaa4e8c6f78ff8afae7b808aae2dc50d4c40 \
--hash=sha256:95e69877983ea39b7303570fa6760f81a3eec23d0e3ab2021b7144b94d06202d \
--hash=sha256:356b3576ad078c89a6107caa9c50cc14e98e3a6c4874a37c3e0273e4baf33de8 \
--hash=sha256:8639cadfda96737427330a094476d4c7a56ac03de7265622fcf4cfe57c8ae18d \
--hash=sha256:97e5306482182170ade15c4b0d8386ded995a07d7cc2ca8f27958d34d6736497 \
--hash=sha256:e6a36bb9474218c7a5b27ae476035497a6990e21d04c279884eb10d9b290f1b1 \
--hash=sha256:abb7a75ed8b968f3061327c433a0fbd17b729947b400747c334a9c29a9af6c58 \
--hash=sha256:14d4f3cd4e8b524ae9b8aa567858beed70c392fdec26dbdb0a8a418392e71708 \
--hash=sha256:17ff94e7a83aa8671a25bf5b59326ec26da379ace2ebc4411d690d80a7fbcf23 \
--hash=sha256:9f3cba480d3deb69f6ee2c1825060177a22c7826431458c697df88e6aeb3caee \
--hash=sha256:fa877ca7f6b48054f847b61d6fa7bed5cebb663ebc55e018fda12db09dcc664c \
--hash=sha256:7cbd7574ce8e138bda9df4efc6bf2ab8572c9aff640d8ecfece1b006b68da963 \
--hash=sha256:903bbd302a2378f984aef528f76d4c9b1748f318fe1294961c072bdc7f2ffa3e \
--hash=sha256:049fe7579230e44daef03a259faa24511d10ebfa44f69411d99e6a184fe68073 \
--hash=sha256:dd0b1e9e891f69e7675ba5c92e28b90eaa045f6ab134ffe70b52e948aa175b3c \
--hash=sha256:7418b6bfc7fe3331541b84bb2141c9baf1ec7132a7ecd9f375912eca810e714e \
--hash=sha256:f9d29ca8a77117315101425ec7ec2a47a22ccf59f5593378fc4077ac5b754fce \
--hash=sha256:21915eb821a6b3d9d8eefdaf57d6c345b970ad722f856cd71739493ce003ad08 \
--hash=sha256:eff9d20417ff9dcb0d25e2defc2574d10b491bf2e693b4e491914738b7908168 \
--hash=sha256:32ca72bbc673adbcfecb935bb3fb1b74e663d10a4b241aaa2f5a75fe1d1f90aa \
--hash=sha256:f0214eb2a23b85528310dad848ad2ac58e735612929c8072f6093f3585fd342d \
--hash=sha256:b92e29e58bef6d9cfd340c72b04d74c4b4e9f70c9fa7c78b674d1fec18896dc4 \
--hash=sha256:fdcec0b8399108577ec290f55551d926d9a1fa6cad45882093a7a07ac5ec147b \
--hash=sha256:93f81b134a165cc17123626ab8da2e30c0455441d4ab5576eed73a64c025b25c \
--hash=sha256:1e12bdc622676ce47ae9abbf455c189e442afdde8818d9da983085df6312e7a1 \
--hash=sha256:8c790abda465726cfb8bb08bd4ca9a5d0a7bd77c7ac1ca1b839ad823b948ea28 \
--hash=sha256:f276df9830dba7a333544bd41070e8175762a7ac20350786b322b714b0e654f5 \
--hash=sha256:64e6175c2e53195278d7388c454e0b30997573f3f4bd63697f88d855f7a6a1fc \
--hash=sha256:b11548073a2213d950c3f671aa88e6f83cda6e2fb97a8b6317b1b5b33d850e06 \
--hash=sha256:9633b3034d3d901f0a46b7939f8c4d64427dfba6bbc5a36b1a67364cf148a1b0 \
--hash=sha256:eb6ea6da4c787111adf40f697b4e58732ee0942b5d3bd8f435277643329ba627 \
--hash=sha256:f3acda1924472472ddd60c29e5b9db0cec629fbe3c5c5accb74d6d6d14773478 \
--hash=sha256:e859fcb4cbe93504ea18008d1df98dee4f7766db66c435e4882ab35cf70cac43 \
--hash=sha256:00e44c8afdbe5467e4f7b5851be223be68adb4272f44696ee71fe46b7036a711 \
--hash=sha256:ec8c433b3ab0419100bd45b47c9c8551248a5aee30ca5e9d399a0b57ac04651b \
--hash=sha256:288c6a76705dc54fba69fbcb59904ae4ad768b4c768839b8ca5fdadec6dd8cfd \
--hash=sha256:8d2f1fb53a421b410751887eb4ff21386d119ef9cde3797bf5e7ed49fb51a3b3 \
--hash=sha256:166eac03e48784a6a6e0e5f041cfebb1ab400b394db188c48b3a84737f505b67 \
--hash=sha256:572e1787d1460da79590bf44304abbc0a2da944ea64ec549188fa84d89bba7ab \
--hash=sha256:be5f425ff1f5f4b3c1e33ad64ab994eed12fc284a6ea71c5243fd564502ecbe5 \
--hash=sha256:b1692f7d6bc45e3200844be0dba153612103db241691088626a33ff1f24a0d88 \
--hash=sha256:7227b47e73dedaa513cdebb98469705ef0d66eb5a1250144468e9c3097d6b59b \
--hash=sha256:7ff61ff178250f9bb3cd89752df0f1dd0e27316a8bd1465351652b1b4a4cdfd3 \
--hash=sha256:f70a9e237bb792c7cc7e44c531fd48f5897961701cdaa06cf22fc14965c496cf \
--hash=sha256:013d61294b6cd8fe3242932c1c5e36e5d1db2c8afb58606c5a67efce62c1f5fd \
--hash=sha256:e30f5ea4ae2346e62cedde8794a56858a67b878dd79f7df76a0767e356b1744a
idna==3.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:84d9dd047ffa80596e0f246e2eab0b391788b0503584e8945f2368256d2735ff \
--hash=sha256:9d643ff0a55b762d5cdb124b8eaa99c66322e2157b69160bc32796e824360e6d
importlib-metadata==4.8.2; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6" \
--hash=sha256:53ccfd5c134223e497627b9815d5030edf77d2ed573922f7a0b8f8bb81a1c100 \
--hash=sha256:75bdec14c397f528724c1bfd9709d660b33a4d2e77387a3358f20b848bb5e5fb
itsdangerous==2.0.1; python_version >= "3.6" \
--hash=sha256:5174094b9637652bdb841a3029700391451bd092ba3db90600dea710ba28e97c \
--hash=sha256:9e724d68fc22902a1435351f84c3fb8623f303fffcc566a4cb952df8c572cff0
langid==1.1.6 \
--hash=sha256:044bcae1912dab85c33d8e98f2811b8f4ff1213e5e9a9e9510137b84da2cb293
numpy==1.21.1 \
--hash=sha256:38e8648f9449a549a7dfe8d8755a5979b45b3538520d1e735637ef28e8c2dc50 \
--hash=sha256:fd7d7409fa643a91d0a05c7554dd68aa9c9bb16e186f6ccfe40d6e003156e33a \
--hash=sha256:a75b4498b1e93d8b700282dc8e655b8bd559c0904b3910b144646dbbbc03e062 \
--hash=sha256:1412aa0aec3e00bc23fbb8664d76552b4efde98fb71f60737c83efbac24112f1 \
--hash=sha256:e46ceaff65609b5399163de5893d8f2a82d3c77d5e56d976c8b5fb01faa6b671 \
--hash=sha256:c6a2324085dd52f96498419ba95b5777e40b6bcbc20088fddb9e8cbb58885e8e \
--hash=sha256:73101b2a1fef16602696d133db402a7e7586654682244344b8329cdcbbb82172 \
--hash=sha256:7a708a79c9a9d26904d1cca8d383bf869edf6f8e7650d85dbc77b041e8c5a0f8 \
--hash=sha256:95b995d0c413f5d0428b3f880e8fe1660ff9396dcd1f9eedbc311f37b5652e16 \
--hash=sha256:635e6bd31c9fb3d475c8f44a089569070d10a9ef18ed13738b03049280281267 \
--hash=sha256:4a3d5fb89bfe21be2ef47c0614b9c9c707b7362386c9a3ff1feae63e0267ccb6 \
--hash=sha256:8a326af80e86d0e9ce92bcc1e65c8ff88297de4fa14ee936cb2293d414c9ec63 \
--hash=sha256:791492091744b0fe390a6ce85cc1bf5149968ac7d5f0477288f78c89b385d9af \
--hash=sha256:0318c465786c1f63ac05d7c4dbcecd4d2d7e13f0959b01b534ea1e92202235c5 \
--hash=sha256:9a513bd9c1551894ee3d31369f9b07460ef223694098cf27d399513415855b68 \
--hash=sha256:91c6f5fc58df1e0a3cc0c3a717bb3308ff850abdaa6d2d802573ee2b11f674a8 \
--hash=sha256:978010b68e17150db8765355d1ccdd450f9fc916824e8c4e35ee620590e234cd \
--hash=sha256:9749a40a5b22333467f02fe11edc98f022133ee1bfa8ab99bda5e5437b831214 \
--hash=sha256:d7a4aeac3b94af92a9373d6e77b37691b86411f9745190d2c351f410ab3a791f \
--hash=sha256:d9e7912a56108aba9b31df688a4c4f5cb0d9d3787386b87d504762b6754fbb1b \
--hash=sha256:25b40b98ebdd272bc3020935427a4530b7d60dfbe1ab9381a39147834e985eac \
--hash=sha256:8a92c5aea763d14ba9d6475803fc7904bda7decc2a0a68153f587ad82941fec1 \
--hash=sha256:05a0f648eb28bae4bcb204e6fd14603de2908de982e761a2fc78efe0f19e96e1 \
--hash=sha256:f01f28075a92eede918b965e86e8f0ba7b7797a95aa8d35e1cc8821f5fc3ad6a \
--hash=sha256:88c0b89ad1cc24a5efbb99ff9ab5db0f9a86e9cc50240177a571fbe9c2860ac2 \
--hash=sha256:01721eefe70544d548425a07c80be8377096a54118070b8a62476866d5208e33 \
--hash=sha256:2d4d1de6e6fb3d28781c73fbde702ac97f03d79e4ffd6598b880b2d95d62ead4 \
--hash=sha256:dff4af63638afcc57a3dfb9e4b26d434a7a602d225b42d746ea7fe2edf1342fd
pandas==1.3.4; python_full_version >= "3.7.1" \
--hash=sha256:9707bdc1ea9639c886b4d3be6e2a45812c1ac0c2080f94c31b71c9fa35556f9b \
--hash=sha256:c2f44425594ae85e119459bb5abb0748d76ef01d9c08583a667e3339e134218e \
--hash=sha256:372d72a3d8a5f2dbaf566a5fa5fa7f230842ac80f29a931fb4b071502cf86b9a \
--hash=sha256:d99d2350adb7b6c3f7f8f0e5dfb7d34ff8dd4bc0a53e62c445b7e43e163fce63 \
--hash=sha256:4acc28364863127bca1029fb72228e6f473bb50c32e77155e80b410e2068eeac \
--hash=sha256:c2646458e1dce44df9f71a01dc65f7e8fa4307f29e5c0f2f92c97f47a5bf22f5 \
--hash=sha256:5298a733e5bfbb761181fd4672c36d0c627320eb999c59c65156c6a90c7e1b4f \
--hash=sha256:22808afb8f96e2269dcc5b846decacb2f526dd0b47baebc63d913bf847317c8f \
--hash=sha256:b528e126c13816a4374e56b7b18bfe91f7a7f6576d1aadba5dee6a87a7f479ae \
--hash=sha256:fe48e4925455c964db914b958f6e7032d285848b7538a5e1b19aeb26ffaea3ec \
--hash=sha256:eaca36a80acaacb8183930e2e5ad7f71539a66805d6204ea88736570b2876a7b \
--hash=sha256:42493f8ae67918bf129869abea8204df899902287a7f5eaf596c8e54e0ac7ff4 \
--hash=sha256:a388960f979665b447f0847626e40f99af8cf191bce9dc571d716433130cb3a7 \
--hash=sha256:5ba0aac1397e1d7b654fccf263a4798a9e84ef749866060d19e577e927d66e1b \
--hash=sha256:f567e972dce3bbc3a8076e0b675273b4a9e8576ac629149cf8286ee13c259ae5 \
--hash=sha256:c1aa4de4919358c5ef119f6377bc5964b3a7023c23e845d9db7d9016fa0c5b1c \
--hash=sha256:dd324f8ee05925ee85de0ea3f0d66e1362e8c80799eb4eb04927d32335a3e44a \
--hash=sha256:d47750cf07dee6b55d8423471be70d627314277976ff2edd1381f02d52dbadf9 \
--hash=sha256:2d1dc09c0013d8faa7474574d61b575f9af6257ab95c93dcf33a14fd8d2c1bab \
--hash=sha256:10e10a2527db79af6e830c3d5842a4d60383b162885270f8cffc15abca4ba4a9 \
--hash=sha256:35c77609acd2e4d517da41bae0c11c70d31c87aae8dd1aabd2670906c6d2c143 \
--hash=sha256:003ba92db58b71a5f8add604a17a059f3068ef4e8c0c365b088468d0d64935fd \
--hash=sha256:a51528192755f7429c5bcc9e80832c517340317c861318fea9cea081b57c9afd \
--hash=sha256:a2aa18d3f0b7d538e21932f637fbfe8518d085238b429e4790a35e1e44a96ffc
pycountry==19.8.18 \
--hash=sha256:3c57aa40adcf293d59bebaffbe60d8c39976fba78d846a018dc0c2ec9c6cb3cb
python-dateutil==2.8.2; python_full_version >= "3.7.1" \
--hash=sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86 \
--hash=sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9
python-stdnum==1.17 \
--hash=sha256:374e2b5e13912ccdbf50b0b23fca2c3e0531174805c32d74e145f37756328340 \
--hash=sha256:a46e6cf9652807314d369b654b255c86a59f93d18be2834f3d567ed1a346c547
pytz==2021.3; python_full_version >= "3.7.1" \
--hash=sha256:3672058bc3453457b622aab7a1c3bfd5ab0bdae451512f6cf25f64ed37f5b87c \
--hash=sha256:acad2d8b20a1af07d4e4c9d2e9285c5ed9104354062f275f3fcd88dcef4f1326
requests-cache==0.6.4; python_version >= "3.6" \
--hash=sha256:dd9120a4ab7b8128cba9b6b120d8b5560d566a3cd0f828cced3d3fd60a42ec40 \
--hash=sha256:1102daa13a804abe23fad62d694e7dee58d6063a35d94bf6e8c9821e22e5a78b
requests==2.26.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0") \
--hash=sha256:6c1246513ecd5ecd4528a0906f910e8f0f9c6b8ec72030dc9fd154dc1a6efd24 \
--hash=sha256:b8aa58f8cf793ffd8782d3d8cb19e66ef36f7aba4353eec859e74678b01b07a7
six==1.16.0; python_full_version >= "3.7.1" and python_version >= "3.6" \
--hash=sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 \
--hash=sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926
spdx-license-list==0.5.2 \
--hash=sha256:1b338470c7b403dbecceca563a316382c7977516128ca6c1e8f7078e3ed6e7b0 \
--hash=sha256:952996f72ab807972dc2278bb9b91e5294767211e51f09aad9c0e2ff5b82a31b
sqlalchemy==1.4.22; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0") \
--hash=sha256:488608953385d6c127d2dcbc4b11f8d7f2f30b89f6bd27c01b042253d985cc2f \
--hash=sha256:5d856cc50fd26fc8dd04892ed5a5a3d7eeb914fea2c2e484183e2d84c14926e0 \
--hash=sha256:a00d9c6d3a8afe1d1681cd8a5266d2f0ed684b0b44bada2ca82403b9e8b25d39 \
--hash=sha256:5908ea6c652a050d768580d01219c98c071e71910ab8e7b42c02af4010608397 \
--hash=sha256:b7fb937c720847879c7402fe300cfdb2aeff22349fa4ea3651bca4e2d6555939 \
--hash=sha256:9bfe882d5a1bbde0245dca0bd48da0976bd6634cf2041d2fdf0417c5463e40e5 \
--hash=sha256:eedd76f135461cf237534a6dc0d1e0f6bb88a1dc193678fab48a11d223462da5 \
--hash=sha256:6a16c7c4452293da5143afa3056680db2d187b380b3ef4d470d4e29885720de3 \
--hash=sha256:44d23ea797a5e0be71bc5454b9ae99158ea0edc79e2393c6e9a2354de88329c0 \
--hash=sha256:a5e14cb0c0a4ac095395f24575a0e7ab5d1be27f5f9347f1762f21505e3ba9f1 \
--hash=sha256:bc34a007e604091ca3a4a057525efc4cefd2b7fe970f44d20b9cfa109ab1bddb \
--hash=sha256:756f5d2f5b92d27450167247fb574b09c4cd192a3f8c2e493b3e518a204ee543 \
--hash=sha256:9fcbb4b4756b250ed19adc5e28c005b8ed56fdb5c21efa24c6822c0575b4964d \
--hash=sha256:09dbb4bc01a734ccddbf188deb2a69aede4b3c153a72b6d5c6900be7fb2945b1 \
--hash=sha256:f028ef6a1d828bc754852a022b2160e036202ac8658a6c7d34875aafd14a9a15 \
--hash=sha256:68393d3fd31469845b6ba11f5b4209edbea0b58506be0e077aafbf9aa2e21e11 \
--hash=sha256:891927a49b2363a4199763a9d436d97b0b42c65922a4ea09025600b81a00d17e \
--hash=sha256:fd2102a8f8a659522719ed73865dff3d3cc76eb0833039dc473e0ad3041d04be \
--hash=sha256:4014978de28163cd8027434916a92d0f5bb1a3a38dff5e8bf8bff4d9372a9117 \
--hash=sha256:f814d80844969b0d22ea63663da4de5ca1c434cfbae226188901e5d368792c17 \
--hash=sha256:d09a760b0a045b4d799102ae7965b5491ccf102123f14b2a8cc6c01d1021a2d9 \
--hash=sha256:26daa429f039e29b1e523bf763bfab17490556b974c77b5ca7acb545b9230e9a \
--hash=sha256:12bac5fa1a6ea870bdccb96fe01610641dd44ebe001ed91ef7fcd980e9702db5 \
--hash=sha256:39b5d36ab71f73c068cdcf70c38075511de73616e6c7fdd112d6268c2704d9f5 \
--hash=sha256:5102b9face693e8b2db3b2539c7e1a5d9a5b4dc0d79967670626ffd2f710d6e6 \
--hash=sha256:c9373ef67a127799027091fa53449125351a8c943ddaa97bec4e99271dbb21f4 \
--hash=sha256:36a089dc604032d41343d86290ce85d4e6886012eea73faa88001260abf5ff81 \
--hash=sha256:b48148ceedfb55f764562e04c00539bb9ea72bf07820ca15a594a9a049ff6b0e \
--hash=sha256:1fdae7d980a2fa617d119d0dc13ecb5c23cc63a8b04ffcb5298f2c59d86851e9 \
--hash=sha256:ec1be26cdccd60d180359a527d5980d959a26269a2c7b1b327a1eea0cab37ed8
typing-extensions==4.0.1; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6" \
--hash=sha256:7f001e5ac290a0c0401508864c7ec868be4e701886d5b573a9528ed3973d9d3b \
--hash=sha256:4ca091dea149f945ec56afb48dae714f21e8692ef22a395223bcd328961b6a0e
url-normalize==1.4.3; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6" \
--hash=sha256:d23d3a070ac52a67b83a1c59a0e68f8608d1cd538783b401bc9de2c0fac999b2 \
--hash=sha256:ec3c301f04e5bb676d333a7fa162fa977ad2ca04b7e652bfc9fac4e405728eed
urllib3==1.26.7; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version < "4" and python_version >= "3.6" \
--hash=sha256:c4fdf4019605b6e5423637e01bc9fe4daef873709a7973e195ceba0a62bbc844 \
--hash=sha256:4987c65554f7a2dbf30c18fd48778ef124af6fab771a377103da0585e2336ece
wcwidth==0.2.5; python_version >= "3.5" \
--hash=sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784 \
--hash=sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83
xlrd==1.2.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.4.0") \
--hash=sha256:e551fb498759fa3a5384a94ccd4c3c02eb7c00ea424426e212ac0c57be9dfbde \
--hash=sha256:546eb36cee8db40c3eaa46c351e67ffee6eeb5fa2650b71bc4c758a29a1b29b2
zipp==3.6.0; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.6.0" and python_version < "3.8" and python_version >= "3.6" \
--hash=sha256:9fe5ea21568a0a70e50f273397638d39b03353731e6cbbb3fd8502a33fec40bc \
--hash=sha256:71c644c5369f4a6e07636f0aa966270449561fcea2e3d6747b8d23efaa9d7832

View File

@ -14,7 +14,7 @@ install_requires = [
setuptools.setup(
name="csv-metadata-quality",
version="0.4.6",
version="0.5.0",
author="Alan Orth",
author_email="aorth@mjanja.ch",
description="A simple, but opinionated CSV quality checking and fixing pipeline for CSVs in the DSpace ecosystem.",
@ -28,7 +28,6 @@ setuptools.setup(
"Programming Language :: Python :: 3.9",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Operating System :: OS Independent",
"Development Status :: 4 - Beta",
],
packages=["csv_metadata_quality"],
entry_points={

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: GPL-3.0-only
import pandas as pd
from colorama import Fore
@ -23,7 +25,7 @@ def test_check_valid_issn():
result = check.issn(value)
assert result == value
assert result == None
def test_check_invalid_isbn(capsys):
@ -44,51 +46,7 @@ def test_check_valid_isbn():
result = check.isbn(value)
assert result == value
def test_check_invalid_separators(capsys):
"""Test checking invalid multi-value separators."""
value = "Alan|Orth"
field_name = "dc.contributor.author"
check.separators(value, field_name)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.RED}Invalid multi-value separator ({field_name}): {Fore.RESET}{value}\n"
)
def test_check_unnecessary_separators(capsys):
"""Test checking unnecessary multi-value separators."""
field = "Alan||Orth||"
field_name = "dc.contributor.author"
check.separators(field, field_name)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.RED}Unnecessary multi-value separator ({field_name}): {Fore.RESET}{field}\n"
)
def test_check_valid_separators():
"""Test checking valid multi-value separators."""
value = "Alan||Orth"
field_name = "dc.contributor.author"
result = check.separators(value, field_name)
assert result == value
assert result == None
def test_check_missing_date(capsys):
@ -144,7 +102,7 @@ def test_check_valid_date():
result = check.date(value, field_name)
assert result == value
assert result == None
def test_check_suspicious_characters(capsys):
@ -170,7 +128,7 @@ def test_check_valid_iso639_1_language():
result = check.language(value)
assert result == value
assert result == None
def test_check_valid_iso639_3_language():
@ -180,7 +138,7 @@ def test_check_valid_iso639_3_language():
result = check.language(value)
assert result == value
assert result == None
def test_check_invalid_iso639_1_language(capsys):
@ -243,7 +201,7 @@ def test_check_valid_agrovoc():
result = check.agrovoc(value, field_name)
assert result == value
assert result == None
def test_check_uncommon_filename_extension(capsys):
@ -267,7 +225,7 @@ def test_check_common_filename_extension():
result = check.filename_extension(value)
assert result == value
assert result == None
def test_check_incorrect_iso_639_1_language(capsys):
@ -320,7 +278,7 @@ def test_check_correct_iso_639_1_language():
result = experimental.correct_language(series)
assert result == language
assert result == None
def test_check_correct_iso_639_3_language():
@ -335,7 +293,7 @@ def test_check_correct_iso_639_3_language():
result = experimental.correct_language(series)
assert result == language
assert result == None
def test_check_valid_spdx_license_identifier():
@ -345,7 +303,7 @@ def test_check_valid_spdx_license_identifier():
result = check.spdx_license_identifier(license)
assert result == license
assert result == None
def test_check_invalid_spdx_license_identifier(capsys):
@ -360,3 +318,163 @@ def test_check_invalid_spdx_license_identifier(capsys):
captured.out
== f"{Fore.YELLOW}Non-SPDX license identifier: {Fore.RESET}{license}\n"
)
def test_check_duplicate_item(capsys):
"""Test item with duplicate title, type, and date."""
item_title = "Title"
item_type = "Report"
item_date = "2021-03-17"
d = {
"dc.title": [item_title, item_title],
"dcterms.type": [item_type, item_type],
"dcterms.issued": [item_date, item_date],
}
df = pd.DataFrame(data=d)
result = check.duplicate_items(df)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Possible duplicate (dc.title): {Fore.RESET}{item_title}\n"
)
def test_check_no_mojibake():
"""Test string with no mojibake."""
field = "CIAT Publicaçao"
field_name = "dcterms.isPartOf"
result = check.mojibake(field, field_name)
assert result == None
def test_check_mojibake(capsys):
"""Test string with mojibake."""
field = "CIAT Publicaçao"
field_name = "dcterms.isPartOf"
result = check.mojibake(field, field_name)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Possible encoding issue ({field_name}): {Fore.RESET}{field}\n"
)
def test_check_doi_field():
"""Test an item with a DOI field."""
doi = "https://doi.org/10.1186/1743-422X-9-218"
citation = "Orth, A. 2021. Testing all the things. doi: 10.1186/1743-422X-9-218"
# Emulate a column in a transposed dataframe (which is just a series), with
# the citation and a DOI field.
d = {"cg.identifier.doi": doi, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
result = check.citation_doi(series)
assert result == None
def test_check_doi_only_in_citation(capsys):
"""Test an item with a DOI in its citation, but no DOI field."""
citation = "Orth, A. 2021. Testing all the things. doi: 10.1186/1743-422X-9-218"
# Emulate a column in a transposed dataframe (which is just a series), with
# an empty DOI field and a citation containing a DOI.
d = {"cg.identifier.doi": None, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
check.citation_doi(series)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}DOI in citation, but missing a DOI field: {Fore.RESET}{citation}\n"
)
def test_title_in_citation():
"""Test an item with its title in the citation."""
title = "Testing all the things"
citation = "Orth, A. 2021. Testing all the things."
# Emulate a column in a transposed dataframe (which is just a series), with
# the title and citation.
d = {"dc.title": title, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
result = check.title_in_citation(series)
assert result == None
def test_title_not_in_citation(capsys):
"""Test an item with its title missing from the citation."""
title = "Testing all the things"
citation = "Orth, A. 2021. Testing all teh things."
# Emulate a column in a transposed dataframe (which is just a series), with
# the title and citation.
d = {"dc.title": title, "dcterms.bibliographicCitation": citation}
series = pd.Series(data=d)
check.title_in_citation(series)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Title is not present in citation: {Fore.RESET}{title}\n"
)
def test_country_matches_region():
"""Test an item with regions matching its country list."""
country = "Kenya"
region = "Eastern Africa"
# Emulate a column in a transposed dataframe (which is just a series)
d = {"cg.coverage.country": country, "cg.coverage.region": region}
series = pd.Series(data=d)
result = check.countries_match_regions(series)
assert result == None
def test_country_not_matching_region(capsys):
"""Test an item with regions not matching its country list."""
title = "Testing an item with no matching region."
country = "Kenya"
region = ""
missing_region = "Eastern Africa"
# Emulate a column in a transposed dataframe (which is just a series)
d = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": region,
}
series = pd.Series(data=d)
check.countries_match_regions(series)
captured = capsys.readouterr()
assert (
captured.out
== f"{Fore.YELLOW}Missing region ({missing_region}): {Fore.RESET}{title}\n"
)

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: GPL-3.0-only
import csv_metadata_quality.fix as fix
@ -74,8 +76,9 @@ def test_fix_newlines():
value = """Ken
ya"""
field_name = "dcterms.subject"
assert fix.newlines(value) == "Kenya"
assert fix.newlines(value, field_name) == "Kenya"
def test_fix_comma_space():
@ -108,3 +111,12 @@ def test_fix_decomposed_unicode():
field_name = "dc.contributor.author"
assert fix.normalize_unicode(value, field_name) == "Ouédraogo, Mathieu"
def test_fix_mojibake():
"""Test string with no mojibake."""
field = "CIAT Publicaçao"
field_name = "dcterms.isPartOf"
assert fix.mojibake(field, field_name) == "CIAT Publicaçao"