iseal-core/util/generate-hugo-content.py

199 lines
7.1 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
#
# generate-hugo-content.py v0.0.1
#
# SPDX-License-Identifier: GPL-3.0-only
import argparse
import os
import re
import sys
from shutil import copyfile, rmtree
import pandas as pd
def parseSchema(schema_df):
# Iterate over all rows (the "index, row" syntax allows us to access column
# headings in each row, which isn't possible if we just do row).
for index, row in schema_df.iterrows():
element_name = row["element name"]
# Make sure element name is URL friendly because we need to use it in
# the file system and in the URL.
#
# Replace two or more whitespaces with one
element_name = re.sub(r"\s{2,}", " ", element_name)
# Replace unnecessary stuff in some element names (I should tell Peter
# that these belong in the description)
element_name = re.sub(r"\s?\(\w+\)", "", element_name)
# Remove commas and question marks
element_name = re.sub(r"[,?]", "", element_name)
# Replace ": " with a dash (as in "Evaluation: ")
element_name = element_name.replace(": ", "-")
# Replace " / " with a dash (as in "biome / zone")
element_name = element_name.replace(" / ", "-")
# Replace whitespace, colons, and slashes with dashes
element_name = re.sub(r"[\s/]", "-", element_name)
# Lower case it
element_name = element_name.lower()
# Strip just in case
element_name = element_name.strip()
# For example Certifying Body, FSC audit, Certificate, etc
cluster = row["idss element cluster"].capitalize()
# Extract the module (whether from IDSS or extension), for example
# Assurance, Certification, Core, Impact, etc
if "idss schema module" in df.columns:
module = row["idss schema module"]
# Use the default home layout
layout = "home"
elif "fsc extension module" in df.columns:
module = row["fsc extension module"]
# Since we know this is the FSC schema we can set the layout to
# use the custom fsc layout instead of the default home layout.
layout = "fsc"
if row["dspace field name"] is not None and row["dspace field name"] != "":
dspace_field_name = row["dspace field name"]
else:
dspace_field_name = False
# Generate a "safe" version of the element name for use in URLs and
# files by using the DSpace field name with dots replaced by dashes.
element_name_safe = dspace_field_name.replace(".", "-").lower()
print(f"element name: {element_name_safe}")
# Create output directory for term using the URL-safe version
outputDirectory = f"site/content/terms/{element_name_safe}"
os.makedirs(outputDirectory, mode=0o755, exist_ok=True)
if args.debug:
print(f"Created terms directory: site/content/terms/{element_name_safe}")
# Take the element description as is, but remove quotes
element_description = row["element description"].replace("'", "")
# Take the element guidance as is
if row["element guidance"]:
comment = row["element guidance"]
else:
comment = False
example = row["element link for more information"]
# How to use these in the HTML, slightly overlapping?
cardinality = row["element options"].capitalize()
prop_type = row["element type"].capitalize()
if os.path.isfile(f"data/controlled-vocabularies/{element_name_safe}.txt"):
controlled_vocab = True
controlled_vocabulary_src = (
f"data/controlled-vocabularies/{element_name_safe}.txt"
)
controlled_vocabulary_dst = (
f"site/content/terms/{element_name_safe}/vocabulary.txt"
)
copyfile(controlled_vocabulary_src, controlled_vocabulary_dst)
if args.debug:
print(f"Copied controlled vocabulary: {element_name_safe}")
else:
controlled_vocab = False
2022-04-16 17:20:06 +02:00
if "mandatory?" in df.columns and row["mandatory?"] == "mandatory":
required = True
else:
required = False
# Combine element type and options into a "policy" of sorts and convert
# them to sentence case because they are lowercase in the CSV. We don't
# need to do any checks because these fields should always exist.
policy = f'{row["element type"].capitalize()}. {row["element options"].capitalize()}.'
if args.debug:
print(f"Processed: {row['element name']}")
# Create an empty list with lines we'll write to the term's index.md in
# TOML frontmatter format for Hugo.
indexLines = []
indexLines.append("---\n")
# Use the full title for now (even though it's ugly). Better to fix the
# schema spreadsheet than try to process the title here.
indexLines.append("title: '" + row["element name"] + "'\n")
if dspace_field_name:
indexLines.append(f"field: '{dspace_field_name}'\n")
indexLines.append(f"slug: '{element_name_safe}'\n")
if element_description:
indexLines.append(f"description: '{element_description}'\n")
if comment:
indexLines.append(f"comment: '{comment}'\n")
indexLines.append(f"required: {required}\n")
if controlled_vocab:
indexLines.append(f"vocabulary: 'vocabulary.txt'\n")
if module:
indexLines.append(f"module: '{module}'\n")
if cluster:
indexLines.append(f"cluster: '{cluster}'\n")
indexLines.append(f"policy: '{policy}'\n")
if layout:
indexLines.append(f"layout: '{layout}'\n")
## TODO: use some real date...?
# indexLines.append(f"date: '2019-05-04T00:00:00+00:00'\n")
indexLines.append("---")
with open(f"site/content/terms/{element_name_safe}/index.md", "w") as f:
f.writelines(indexLines)
parser = argparse.ArgumentParser(
2021-12-20 11:04:11 +01:00
description="Parse an ISEAL schema CSV file to produce documentation about metadata requirements."
)
parser.add_argument(
"--clean",
help="Clean output directory before building.",
action="store_true",
)
parser.add_argument(
"-d",
"--debug",
help="Print debug messages.",
action="store_true",
)
parser.add_argument(
"-i",
"--input-file",
2021-12-20 11:04:11 +01:00
help="Path to schema fields file (ie, iseal-core.csv).",
required=True,
type=argparse.FileType("r"),
)
args = parser.parse_args()
if args.clean:
if args.debug:
print(f"Cleaning terms output directory")
rmtree("site/content/terms", ignore_errors=True)
if args.debug:
print(f"Creating terms output directory")
# Make sure content directory exists. This is where we will deposit all the term
# metadata and controlled vocabularies for Hugo to process.
os.makedirs("site/content/terms", mode=0o755, exist_ok=True)
if args.debug:
print(f"Opening {args.input_file.name}")
df = pd.read_csv(args.input_file.name)
# Added inplace=True
df.dropna(how="all", axis=1, inplace=True)
df.fillna("", inplace=True)
parseSchema(df)