1
0
mirror of https://github.com/ilri/dspace-statistics-api.git synced 2025-05-10 07:06:01 +02:00

Compare commits

...

28 Commits

Author SHA1 Message Date
daf15610f2 CHANGELOG.md: Update changes and move to 0.4.2 2018-10-05 00:19:18 +03:00
4ede966dbb indexer.py: Fix logic error in SQL insert
This was inserting correctly on the first run, but subsequent runs
were inserting into the incorrect column on conflict. This made it
seem like there were downloads for items where there were none.
2018-10-05 00:16:24 +03:00
3580473a6d README.md: Add TODO about JSON in PostgreSQL 2018-10-03 20:08:18 +03:00
071c24535f README.md: Add TODO about API versions 2018-10-03 11:12:18 +03:00
4291aecac4 README.md: Formatting 2018-09-27 12:45:15 +03:00
46bf537e88 CHANGELOG.md: Add note about cursor change 2018-09-27 11:08:42 +03:00
eaca5354d3 app.py: Iterate directly on cursor
We don't need to create an intermediate variable for the results of
the SQL query because psycopg2's cursor is iterable.

See: http://initd.org/psycopg/docs/cursor.html
2018-09-27 11:03:44 +03:00
4600288ee4 CHANGELOG.md: Add note about ujson 2018-09-27 09:53:42 +03:00
8179563378 requirements.txt: pip freeze 2018-09-27 09:53:16 +03:00
b14c3eef4d indexer.py: Use ujson instead of json
Falcon optionally makes use of the ujson library to speed up media
(de)serialization, error serialization, and query string parsing.

See: https://falcon.readthedocs.io/en/stable/user/install.html
2018-09-27 09:51:40 +03:00
71a789b13f CHANGELOG.md. Add unreleased changes 2018-09-27 09:30:48 +03:00
c68ddacaa4 README.md: Add note about systemd units for deployment 2018-09-27 09:26:47 +03:00
9c9e79769e README.md: Add TODO 2018-09-27 09:17:45 +03:00
2ad5ade556 README.md: Improve introduction 2018-09-27 09:12:52 +03:00
7412a09670 README.md: Improve introduction 2018-09-27 09:07:28 +03:00
bb744a00b8 README.md: Add requirements 2018-09-27 08:57:27 +03:00
7499b89d99 CHANGELOG.md: Move unreleased changes to v0.4.1 2018-09-27 08:15:54 +03:00
2c1e4952b1 indexer.py: Remove comment
I had left this there so I could remember how to get the number of
facets, but I don't need it anymore.
2018-09-26 23:27:48 +03:00
379f202c3f CHANGELOG.md: Add unreleased changes 2018-09-26 23:26:48 +03:00
560fa6056d README.md: Remove batch inserts from TODO 2018-09-26 23:25:35 +03:00
385a34e5d0 indexer.py: Use psycopg2's execute_values to batch inserts
Batch inserts are much faster than a series of individual inserts
because they drastically reduce the overhead caused by round-trip
communication with the server. My tests in development confirm:

  - cursor.execute(): 19 seconds
  - execute_values(): 14 seconds

I'm currently only working with 4,500 rows, but I will experiment
with larger data sets, as well as larger batches. For example, on
the PostgreSQL mailing list a user reports doing 10,000 rows with
a page size of 100.

See: http://initd.org/psycopg/docs/extras.html#psycopg2.extras.execute_values
See: https://github.com/psycopg/psycopg2/issues/491#issuecomment-276551038
2018-09-26 23:10:29 +03:00
d0ea62d2bd database.py: Use one line for psycopg2 imports 2018-09-26 22:23:24 +03:00
366ae25b8e README.md: Add link to psycopg2 issue about batch inserts 2018-09-26 22:23:08 +03:00
0f3054ae03 README.md: Add TODO about batch DB inserts 2018-09-26 16:31:13 +03:00
6bf34235d4 CHANGELOG.md: Move unreleased changes to version 0.4.0 2018-09-26 02:51:27 +03:00
e604d8ca81 indexer.py: Major refactor
Basically Solr's numFound has nothing to do with the actual number
of distinct facets that are returned. You need to use Solr's stats
component to get the number of distinct facets, aka countDistinct.
This is apparently deprecated in newer Solr versions, but we're on
version 4.10 and it works there.

Also, I realized that there is no need to return facets for items
without any views or downloads. Using facet.mincount=1 reduces the
result set size and also means we can store less data in the data-
base. The API returns HTTP 404 Not Found if an item is not in the
database anyways.

I can't figure it out exactly, but there is some weird issue with
Solr's facet results when you don't use facet.mincount=1. For some
reason you get tons of results with an id that doesn't even exist
in the document database, let alone as an actual DSpace item!

See: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
2018-09-26 02:41:10 +03:00
fc35b816f3 CHANGELOG.md: Add unreleased changes 2018-09-25 23:09:44 +03:00
9e6a2f7559 contrib/dspace-statistics-indexer.timer: Fix syntax
You can test OnCalendar strings using systemd-analyze calendar, eg:

    # systemd-analyze calendar '*-*-* 06:00:00,18:00:00'
    Failed to parse calendar specification '*-*-* 06:00:00,18:00:00':
    Invalid argument
    # systemd-analyze calendar '*-*-* 06,18:00:00'
    Normalized form: *-*-* 06,18:00:00
        Next elapse: Wed 2018-09-26 06:00:00 EEST
           (in UTC): Wed 2018-09-26 03:00:00 UTC
           From now: 6h left
2018-09-25 23:07:03 +03:00
7 changed files with 108 additions and 44 deletions

View File

@ -4,6 +4,24 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.4.2] - 2018-10-04
### Changed
- README.md introduction and requirements
- Use ujson instead of json
- Iterate directly on SQL cursor in `/items` route
### Fixed
- Logic error in SQL for item views
## [0.4.1] - 2018-09-26
### Changed
- Use execute_values() to batch insert records to PostgreSQL
## [0.4.0] - 2018-09-25
### Fixed
- Invalid OnCalendar syntax in dspace-statistics-indexer.timer
- Major logic error in indexer.py
## [0.3.2] - 2018-09-25
## Changed
- /item/id route now returns HTTP 404 if an item is not found

View File

@ -1,16 +1,28 @@
# DSpace Statistics API
A quick and dirty REST API to expose Solr view and download statistics for items in a DSpace repository.
A simple REST API to expose Solr view and download statistics for items in a DSpace repository. This project contains a standalone indexing component and a WSGI application.
Written and tested in Python 3.5, 3.6, and 3.7. Requires PostgreSQL version 9.5 or greater for [`UPSERT` support](https://wiki.postgresql.org/wiki/UPSERT).
## Requirements
## Installation
Create a virtual environment and run it:
- Python 3.5+
- PostgreSQL version 9.5+ (due to [`UPSERT` support](https://wiki.postgresql.org/wiki/UPSERT))
- DSpace 4+ with [Solr usage statistics enabled](https://wiki.duraspace.org/display/DSDOC5x/SOLR+Statistics)
## Installation and Testing
Create a Python virtual environment and install the dependencies:
$ python -m venv venv
$ . venv/bin/activate
$ pip install -r requirements.txt
Set up the environment variables Solr and PostgreSQL:
$ export SOLR_SERVER=http://localhost:8080/solr
$
$ gunicorn app:api
## Deployment
There are example systemd service and timer units in the `contrib` directory.
## Using the API
The API exposes the following endpoints:
@ -25,6 +37,9 @@ The API exposes the following endpoints:
- Close up DB connection when gunicorn shuts down gracefully
- Better logging
- Tests
- Check if database exists (try/except)
- Version API
- Use JSON in PostgreSQL
## License
This work is licensed under the [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).

6
app.py
View File

@ -22,16 +22,16 @@ class AllItemsResource:
# get statistics, ordered by id, and use limit and offset to page through results
cursor.execute('SELECT id, views, downloads FROM items ORDER BY id ASC LIMIT {} OFFSET {}'.format(limit, offset))
results = cursor.fetchmany(limit)
cursor.close()
# create a list to hold dicts of item stats
statistics = list()
# iterate over results and build statistics object
for item in results:
for item in cursor:
statistics.append({ 'id': item['id'], 'views': item['views'], 'downloads': item['downloads'] })
cursor.close()
message = {
'currentPage': page,
'totalPages': pages,

View File

@ -3,7 +3,7 @@ Description=DSpace Statistics Indexer
[Timer]
# twice a day, at 6AM and 6PM
OnCalendar=*-*-* 06:00:00,18:00:00
OnCalendar=*-*-* 06,18:00:00
# Add a random delay of 03600 seconds
RandomizedDelaySec=3600
Persistent=true

View File

@ -2,8 +2,7 @@ from config import DATABASE_NAME
from config import DATABASE_USER
from config import DATABASE_PASS
from config import DATABASE_HOST
import psycopg2
import psycopg2.extras
import psycopg2, psycopg2.extras
def database_connection():
connection = psycopg2.connect("dbname={} user={} password={} host='{}'".format(DATABASE_NAME, DATABASE_USER, DATABASE_PASS, DATABASE_HOST), cursor_factory=psycopg2.extras.DictCursor)

View File

@ -31,98 +31,129 @@
# See: https://wiki.duraspace.org/display/DSPACE/Solr
from database import database_connection
import ujson
import psycopg2.extras
from solr import solr_connection
def index_views():
print("Populating database with item views.")
# determine the total number of items with views (aka Solr's numFound)
# get total number of distinct facets for items with a minimum of 1 view,
# otherwise Solr returns all kinds of weird ids that are actually not in
# the database. Also, stats are expensive, but we need stats.calcdistinct
# so we can get the countDistinct summary.
#
# see: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'id',
'stats.calcdistinct':True
}, rows=0)
# divide results into "pages" (numFound / 100)
results_numFound = res.get_num_found()
# get total number of distinct facets (countDistinct)
results_totalNumFacets = ujson.loads(res.get_json())['stats']['stats_fields']['id']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = round(results_numFound / results_per_page)
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
print('Page {} of {}.'.format(results_current_page, results_num_pages))
print('Indexing item views (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
})
}, rows=0)
# make sure total number of results > 0
if res.get_num_found() > 0:
# SolrClient's get_facets() returns a dict of dicts
views = res.get_facets()
# in this case iterate over the 'id' dict and get the item ids and views
for item_id, item_views in views['id'].items():
cursor.execute('''INSERT INTO items(id, views) VALUES(%s, %s)
ON CONFLICT(id) DO UPDATE SET downloads=excluded.views''',
(item_id, item_views))
# SolrClient's get_facets() returns a dict of dicts
views = res.get_facets()
# in this case iterate over the 'id' dict and get the item ids and views
for item_id, item_views in views['id'].items():
data.append((item_id, item_views))
# do a batch insert of values from the current "page" of results
sql = 'INSERT INTO items(id, views) VALUES %s ON CONFLICT(id) DO UPDATE SET views=excluded.views'
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
cursor.close()
def index_downloads():
print("Populating database with item downloads.")
# determine the total number of items with downloads (aka Solr's numFound)
# get the total number of distinct facets for items with at least 1 download
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'owningItem',
'stats.calcdistinct':True
}, rows=0)
# divide results into "pages" (numFound / 100)
results_numFound = res.get_num_found()
# get total number of distinct facets (countDistinct)
results_totalNumFacets = ujson.loads(res.get_json())['stats']['stats_fields']['owningItem']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = round(results_numFound / results_per_page)
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
print('Page {} of {}.'.format(results_current_page, results_num_pages))
print('Indexing item downloads (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
})
}, rows=0)
# make sure total number of results > 0
if res.get_num_found() > 0:
# SolrClient's get_facets() returns a dict of dicts
downloads = res.get_facets()
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
for item_id, item_downloads in downloads['owningItem'].items():
cursor.execute('''INSERT INTO items(id, downloads) VALUES(%s, %s)
ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads''',
(item_id, item_downloads))
# SolrClient's get_facets() returns a dict of dicts
downloads = res.get_facets()
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
for item_id, item_downloads in downloads['owningItem'].items():
data.append((item_id, item_downloads))
# do a batch insert of values from the current "page" of results
sql = 'INSERT INTO items(id, downloads) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads'
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
cursor.close()

View File

@ -9,4 +9,5 @@ python-mimeparse==1.6.0
requests==2.19.1
six==1.11.0
SolrClient==0.2.1
ujson==1.35
urllib3==1.23