1
0
mirror of https://github.com/ilri/dspace-statistics-api.git synced 2025-05-10 15:16:02 +02:00

Compare commits

..

31 Commits

Author SHA1 Message Date
7499b89d99 CHANGELOG.md: Move unreleased changes to v0.4.1 2018-09-27 08:15:54 +03:00
2c1e4952b1 indexer.py: Remove comment
I had left this there so I could remember how to get the number of
facets, but I don't need it anymore.
2018-09-26 23:27:48 +03:00
379f202c3f CHANGELOG.md: Add unreleased changes 2018-09-26 23:26:48 +03:00
560fa6056d README.md: Remove batch inserts from TODO 2018-09-26 23:25:35 +03:00
385a34e5d0 indexer.py: Use psycopg2's execute_values to batch inserts
Batch inserts are much faster than a series of individual inserts
because they drastically reduce the overhead caused by round-trip
communication with the server. My tests in development confirm:

  - cursor.execute(): 19 seconds
  - execute_values(): 14 seconds

I'm currently only working with 4,500 rows, but I will experiment
with larger data sets, as well as larger batches. For example, on
the PostgreSQL mailing list a user reports doing 10,000 rows with
a page size of 100.

See: http://initd.org/psycopg/docs/extras.html#psycopg2.extras.execute_values
See: https://github.com/psycopg/psycopg2/issues/491#issuecomment-276551038
2018-09-26 23:10:29 +03:00
d0ea62d2bd database.py: Use one line for psycopg2 imports 2018-09-26 22:23:24 +03:00
366ae25b8e README.md: Add link to psycopg2 issue about batch inserts 2018-09-26 22:23:08 +03:00
0f3054ae03 README.md: Add TODO about batch DB inserts 2018-09-26 16:31:13 +03:00
6bf34235d4 CHANGELOG.md: Move unreleased changes to version 0.4.0 2018-09-26 02:51:27 +03:00
e604d8ca81 indexer.py: Major refactor
Basically Solr's numFound has nothing to do with the actual number
of distinct facets that are returned. You need to use Solr's stats
component to get the number of distinct facets, aka countDistinct.
This is apparently deprecated in newer Solr versions, but we're on
version 4.10 and it works there.

Also, I realized that there is no need to return facets for items
without any views or downloads. Using facet.mincount=1 reduces the
result set size and also means we can store less data in the data-
base. The API returns HTTP 404 Not Found if an item is not in the
database anyways.

I can't figure it out exactly, but there is some weird issue with
Solr's facet results when you don't use facet.mincount=1. For some
reason you get tons of results with an id that doesn't even exist
in the document database, let alone as an actual DSpace item!

See: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
2018-09-26 02:41:10 +03:00
fc35b816f3 CHANGELOG.md: Add unreleased changes 2018-09-25 23:09:44 +03:00
9e6a2f7559 contrib/dspace-statistics-indexer.timer: Fix syntax
You can test OnCalendar strings using systemd-analyze calendar, eg:

    # systemd-analyze calendar '*-*-* 06:00:00,18:00:00'
    Failed to parse calendar specification '*-*-* 06:00:00,18:00:00':
    Invalid argument
    # systemd-analyze calendar '*-*-* 06,18:00:00'
    Normalized form: *-*-* 06,18:00:00
        Next elapse: Wed 2018-09-26 06:00:00 EEST
           (in UTC): Wed 2018-09-26 03:00:00 UTC
           From now: 6h left
2018-09-25 23:07:03 +03:00
46cfc3ffbc CHANGELOG.md: Release version 0.3.2 2018-09-25 13:14:08 +03:00
2850035a4c Return HTTP 404 when an item id is not found 2018-09-25 13:12:53 +03:00
c0b550109a README.md: Improve wording 2018-09-25 12:24:52 +03:00
bfceffd84d indexer.py: Improve inline documentation 2018-09-25 12:23:31 +03:00
d0552f5047 CHANGELOG.md: Move unreleased changes to version 0.3.1 2018-09-25 12:18:26 +03:00
c3a0bf7f44 CHANGELOG.md: Add Python 3.7 to Travis CI config 2018-09-25 12:17:49 +03:00
6e47e9c9ee .travis.yml: Add Python 3.7 2018-09-25 12:17:20 +03:00
cd90d618d6 CHANGELOG.md: Fix error in old release 2018-09-25 12:17:01 +03:00
280d211d56 CHANGELOG.md: Add note about kazoo 2.5.0 2018-09-25 12:12:10 +03:00
806d63137f requirements.txt: Use kazoo 2.5.0
SolrClient 0.2.1 currently depends on kazoo 2.2.1, but there is an
issue with Python 3.7 in kazoo <= 2.5.0. Kazoo 2.5.0 fixes the is-
sue with Python 3.7, and for my limited usage of SolrClient it se-
ems to work fine.

See: https://github.com/moonlitesolutions/SolrClient/issues/79
2018-09-25 12:08:28 +03:00
f7c7390e4f README.md: Add note about Python 3.7 2018-09-25 12:07:58 +03:00
702724e8a4 CHANGELOG.md: Move unreleased changes to version 0.3.0 2018-09-25 11:38:36 +03:00
36818d03ef CHANGELOG.md: Update unreleased changes 2018-09-25 11:37:56 +03:00
4cf8656b35 Change / route to /items
I think it's more obvious if the "all items" route is plural. Also,
this will allow me to eventually put documentation at the root.
2018-09-25 11:34:07 +03:00
f30a464cd1 README.md: Add notes about API endpoints 2018-09-25 11:28:12 +03:00
93ae12e313 README.md: Update introduction 2018-09-25 11:15:12 +03:00
dc978e9333 CHANGELOG.md: Add note about requirements.txt and Travis CI 2018-09-25 11:09:02 +03:00
295436fea0 Add .travis.yml 2018-09-25 11:08:01 +03:00
46a1476ab0 Add requirements.txt
Generated with `pip freeze`. This is so I can pin the versions of
packages that I've tested with as well as to allow Travis to test
whether the project runs on various Pythons and to let GitHub in-
form me of vulnerabilities in some libraries.
2018-09-25 11:02:50 +03:00
8 changed files with 148 additions and 57 deletions

9
.travis.yml Normal file
View File

@ -0,0 +1,9 @@
language: python
python:
- "3.5"
- "3.6"
- "3.7"
install:
- pip install -r requirements.txt
# vim: ts=2 sw=2 et

View File

@ -4,6 +4,33 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.4.1] - 2018-09-26
### Changed
- Use execute_values() to batch insert records to PostgreSQL
## [0.4.0] - 2018-09-25
### Fixed
- Invalid OnCalendar syntax in dspace-statistics-indexer.timer
- Major logic error in indexer.py
## [0.3.2] - 2018-09-25
## Changed
- /item/id route now returns HTTP 404 if an item is not found
## [0.3.1] - 2018-09-25
### Changed
- Force SolrClient's kazoo dependency to version 2.5.0 to work with Python 3.7
- Add Python 3.7 to Travis CI configuration
## [0.3.0] - 2018-09-25
### Added
- requirements.txt for pip
- Travis CI build configuration for Python 3.5 and 3.6
- Documentation on using the API
### Changed
- The "all items" route from / to /items
## [0.2.1] - 2018-09-24
### Changed
- Environment settings in example systemd unit files

View File

@ -1,22 +1,30 @@
# DSpace Statistics API
A quick and dirty REST API to expose Solr view and download statistics for items in a DSpace repository.
Written and tested in Python 3.6. SolrClient (0.2.1) does not currently run in Python 3.7.0. Requires PostgreSQL version 9.5 or greater for [`UPSERT` support](https://wiki.postgresql.org/wiki/UPSERT).
Written and tested in Python 3.5, 3.6, and 3.7. Requires PostgreSQL version 9.5 or greater for [`UPSERT` support](https://wiki.postgresql.org/wiki/UPSERT).
## Installation
Create a virtual environment and run it:
$ virtualenv -p /usr/bin/python3.6 venv
$ python -m venv venv
$ . venv/bin/activate
$ pip install falcon gunicorn SolrClient psycopg2-binary
$ pip install -r requirements.txt
$ gunicorn app:api
## Using the API
The API exposes the following endpoints:
- GET `/items`return views and downloads for all items that Solr knows about¹. Accepts `limit` and `page` query parameters for pagination of results.
- GET `/item/id`return views and downloads for a single item (*id* must be a positive integer). Returns HTTP 404 if an item id is not found.
¹ We are querying the Solr statistics core, which technically only knows about items that have either views or downloads.
## Todo
- Add API documentation
- Close up DB connection when gunicorn shuts down gracefully
- Better logging
- Return HTTP 404 when item_id is nonexistent
- Tests
## License
This work is licensed under the [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).

27
app.py
View File

@ -47,19 +47,26 @@ class ItemResource:
cursor = db.cursor()
cursor.execute('SELECT views, downloads FROM items WHERE id={}'.format(item_id))
results = cursor.fetchone()
if cursor.rowcount == 0:
raise falcon.HTTPNotFound(
title='Item not found',
description='The item with id "{}" was not found.'.format(item_id)
)
else:
results = cursor.fetchone()
statistics = {
'id': item_id,
'views': results['views'],
'downloads': results['downloads']
}
resp.media = statistics
cursor.close()
statistics = {
'id': item_id,
'views': results['views'],
'downloads': results['downloads']
}
resp.media = statistics
api = falcon.API()
api.add_route('/', AllItemsResource())
api.add_route('/items', AllItemsResource())
api.add_route('/item/{item_id:int}', ItemResource())
# vim: set sw=4 ts=4 expandtab:

View File

@ -3,7 +3,7 @@ Description=DSpace Statistics Indexer
[Timer]
# twice a day, at 6AM and 6PM
OnCalendar=*-*-* 06:00:00,18:00:00
OnCalendar=*-*-* 06,18:00:00
# Add a random delay of 03600 seconds
RandomizedDelaySec=3600
Persistent=true

View File

@ -2,8 +2,7 @@ from config import DATABASE_NAME
from config import DATABASE_USER
from config import DATABASE_PASS
from config import DATABASE_HOST
import psycopg2
import psycopg2.extras
import psycopg2, psycopg2.extras
def database_connection():
connection = psycopg2.connect("dbname={} user={} password={} host='{}'".format(DATABASE_NAME, DATABASE_USER, DATABASE_PASS, DATABASE_HOST), cursor_factory=psycopg2.extras.DictCursor)

View File

@ -20,111 +20,140 @@
# ---
#
# Connects to a DSpace Solr statistics core and ingests item views and downloads
# into a Postgres database for use with other applications (an API, for example).
# into a PostgreSQL database for use by other applications (like an API).
#
# This script is written for Python 3 and requires several modules that you can
# install with pip (I recommend setting up a Python virtual environment first):
# This script is written for Python 3.5+ and requires several modules that you
# can install with pip (I recommend using a Python virtual environment):
#
# $ pip install SolrClient
# $ pip install SolrClient psycopg2-binary
#
# See: https://solrclient.readthedocs.io/en/latest/SolrClient.html
# See: https://wiki.duraspace.org/display/DSPACE/Solr
#
# Tested with Python 3.5 and 3.6.
from database import database_connection
import json
import psycopg2.extras
from solr import solr_connection
def index_views():
print("Populating database with item views.")
# determine the total number of items with views (aka Solr's numFound)
# get total number of distinct facets for items with a minimum of 1 view,
# otherwise Solr returns all kinds of weird ids that are actually not in
# the database. Also, stats are expensive, but we need stats.calcdistinct
# so we can get the countDistinct summary.
#
# see: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'id',
'stats.calcdistinct':True
}, rows=0)
# divide results into "pages" (numFound / 100)
results_numFound = res.get_num_found()
# get total number of distinct facets (countDistinct)
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['id']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = round(results_numFound / results_per_page)
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
print('Page {} of {}.'.format(results_current_page, results_num_pages))
print('Indexing item views (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
})
}, rows=0)
# make sure total number of results > 0
if res.get_num_found() > 0:
# SolrClient's get_facets() returns a dict of dicts
views = res.get_facets()
# in this case iterate over the 'id' dict and get the item ids and views
for item_id, item_views in views['id'].items():
cursor.execute('''INSERT INTO items(id, views) VALUES(%s, %s)
ON CONFLICT(id) DO UPDATE SET downloads=excluded.views''',
(item_id, item_views))
# SolrClient's get_facets() returns a dict of dicts
views = res.get_facets()
# in this case iterate over the 'id' dict and get the item ids and views
for item_id, item_views in views['id'].items():
data.append((item_id, item_views))
# do a batch insert of values from the current "page" of results
sql = 'INSERT INTO items(id, views) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.views'
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
cursor.close()
def index_downloads():
print("Populating database with item downloads.")
# determine the total number of items with downloads (aka Solr's numFound)
# get the total number of distinct facets for items with at least 1 download
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'owningItem',
'stats.calcdistinct':True
}, rows=0)
# divide results into "pages" (numFound / 100)
results_numFound = res.get_num_found()
# get total number of distinct facets (countDistinct)
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['owningItem']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = round(results_numFound / results_per_page)
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
print('Page {} of {}.'.format(results_current_page, results_num_pages))
print('Indexing item downloads (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
})
}, rows=0)
# make sure total number of results > 0
if res.get_num_found() > 0:
# SolrClient's get_facets() returns a dict of dicts
downloads = res.get_facets()
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
for item_id, item_downloads in downloads['owningItem'].items():
cursor.execute('''INSERT INTO items(id, downloads) VALUES(%s, %s)
ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads''',
(item_id, item_downloads))
# SolrClient's get_facets() returns a dict of dicts
downloads = res.get_facets()
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
for item_id, item_downloads in downloads['owningItem'].items():
data.append((item_id, item_downloads))
# do a batch insert of values from the current "page" of results
sql = 'INSERT INTO items(id, downloads) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads'
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
cursor.close()

12
requirements.txt Normal file
View File

@ -0,0 +1,12 @@
certifi==2018.8.24
chardet==3.0.4
falcon==1.4.1
gunicorn==19.9.0
idna==2.7
kazoo==2.5.0
psycopg2-binary==2.7.5
python-mimeparse==1.6.0
requests==2.19.1
six==1.11.0
SolrClient==0.2.1
urllib3==1.23