1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2024-12-23 04:32:21 +01:00
csv-metadata-quality/csv_metadata_quality/app.py

239 lines
8.2 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: GPL-3.0-only
import argparse
import re
import signal
import sys
import pandas as pd
from colorama import Fore
import csv_metadata_quality.check as check
import csv_metadata_quality.experimental as experimental
import csv_metadata_quality.fix as fix
from csv_metadata_quality.version import VERSION
def parse_args(argv):
2019-08-29 00:10:39 +02:00
parser = argparse.ArgumentParser(description="Metadata quality checker and fixer.")
parser.add_argument(
"--agrovoc-fields",
"-a",
help="Comma-separated list of fields to validate against AGROVOC, for example: dcterms.subject,cg.coverage.country",
2019-08-29 00:10:39 +02:00
)
parser.add_argument(
"--drop-invalid-agrovoc",
"-d",
help="After validating metadata values against AGROVOC, drop invalid values.",
action="store_true",
)
parser.add_argument(
"--experimental-checks",
"-e",
2020-01-15 10:41:31 +01:00
help="Enable experimental checks like language detection",
action="store_true",
)
2019-08-29 00:10:39 +02:00
parser.add_argument(
"--input-file",
"-i",
help="Path to input file. Must be a UTF-8 CSV.",
2019-08-29 00:10:39 +02:00
required=True,
type=argparse.FileType("r", encoding="UTF-8"),
)
parser.add_argument(
"--output-file",
"-o",
help="Path to output file (always CSV).",
required=True,
type=argparse.FileType("w", encoding="UTF-8"),
)
parser.add_argument(
"--unsafe-fixes", "-u", help="Perform unsafe fixes.", action="store_true"
)
parser.add_argument(
"--version", "-V", action="version", version=f"CSV Metadata Quality v{VERSION}"
)
parser.add_argument(
"--exclude-fields",
"-x",
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dcterms.bibliographicCitation",
2019-08-29 00:10:39 +02:00
)
args = parser.parse_args()
return args
def signal_handler(signal, frame):
sys.exit(1)
def run(argv):
args = parse_args(argv)
# set the signal handler for SIGINT (^C)
signal.signal(signal.SIGINT, signal_handler)
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
df = pd.read_csv(args.input_file, dtype=str)
# Check if the user requested to skip any fields
if args.exclude_fields:
# Split the list of excluded fields on ',' into a list. Note that the
# user should be careful to no include spaces here.
exclude = args.exclude_fields.split(",")
else:
exclude = list()
for column in df.columns:
if column in exclude:
print(f"{Fore.YELLOW}Skipping {Fore.RESET}{column}")
continue
if args.unsafe_fixes:
match = re.match(r"^.*?abstract.*$", column)
if match is None:
# Fix: whitespace
df[column] = df[column].apply(fix.whitespace, field_name=column)
# Fix: newlines
df[column] = df[column].apply(fix.newlines, field_name=column)
# Fix: missing space after comma. Only run on author and citation
# fields for now, as this problem is mostly an issue in names.
if args.unsafe_fixes:
2019-08-29 00:10:39 +02:00
match = re.match(r"^.*?(author|citation).*$", column)
if match is not None:
df[column] = df[column].apply(fix.comma_space, field_name=column)
# Fix: perform Unicode normalization (NFC) to convert decomposed
# characters into their canonical forms.
if args.unsafe_fixes:
df[column] = df[column].apply(fix.normalize_unicode, field_name=column)
# Check: suspicious characters
df[column].apply(check.suspicious_characters, field_name=column)
# Fix: mojibake. If unsafe fixes are not enabled then we only check.
if args.unsafe_fixes:
df[column] = df[column].apply(fix.mojibake, field_name=column)
else:
df[column].apply(check.mojibake, field_name=column)
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Fix: invalid and unnecessary multi-value separators. Skip the title
# and abstract fields because "|" is used to indicate something like
# a subtitle.
match = re.match(r"^.*?(abstract|title).*$", column)
if match is None:
df[column] = df[column].apply(fix.separators, field_name=column)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace, field_name=column)
2019-07-29 17:05:03 +02:00
# Fix: duplicate metadata values
df[column] = df[column].apply(fix.duplicates, field_name=column)
2019-07-29 17:05:03 +02:00
# Check: invalid AGROVOC subject and optionally drop them
if args.agrovoc_fields:
# Identify fields the user wants to validate against AGROVOC
2019-08-29 00:10:39 +02:00
for field in args.agrovoc_fields.split(","):
if column == field:
df[column] = df[column].apply(
check.agrovoc, field_name=column, drop=args.drop_invalid_agrovoc
)
# Check: invalid language
2019-08-29 00:10:39 +02:00
match = re.match(r"^.*?language.*$", column)
if match is not None:
df[column].apply(check.language)
# Check: invalid ISSN
2019-08-29 00:10:39 +02:00
match = re.match(r"^.*?issn.*$", column)
if match is not None:
df[column].apply(check.issn)
# Check: invalid ISBN
2019-08-29 00:10:39 +02:00
match = re.match(r"^.*?isbn.*$", column)
if match is not None:
df[column].apply(check.isbn)
# Check: invalid date
match = re.match(r"^.*?(date|dcterms\.issued).*$", column)
if match is not None:
df[column].apply(check.date, field_name=column)
# Check: filename extension
2019-08-29 00:10:39 +02:00
if column == "filename":
df[column].apply(check.filename_extension)
# Check: SPDX license identifier
match = re.match(r"dcterms\.license.*$", column)
if match is not None:
df[column].apply(check.spdx_license_identifier)
### End individual column checks ###
# Check: duplicate items
# We extract just the title, type, and date issued columns to analyze
try:
duplicates_df = df.filter(
regex=r"dcterms\.title|dc\.title|dcterms\.type|dc\.type|dcterms\.issued|dc\.date\.issued"
)
check.duplicate_items(duplicates_df)
# Delete the temporary duplicates DataFrame
del duplicates_df
except IndexError:
pass
##
# Perform some checks on rows so we can consider items as a whole rather
# than simple on a field-by-field basis. This allows us to check whether
# the language used in the title and abstract matches the language indi-
# cated in the language field, for example.
#
# This is slower and apparently frowned upon in the Pandas community be-
# cause it requires iterating over rows rather than using apply over a
# column. For now it will have to do.
##
# Transpose the DataFrame so we can consider each row as a column
df_transposed = df.T
# Remember, here a "column" is an item (previously row). Perhaps I
# should rename column in this for loop...
for column in df_transposed.columns:
# Check: citation DOI
check.citation_doi(df_transposed[column], exclude)
# Check: title in citation
check.title_in_citation(df_transposed[column], exclude)
if args.unsafe_fixes:
# Fix: countries match regions
df_transposed[column] = fix.countries_match_regions(
df_transposed[column], exclude
)
else:
# Check: countries match regions
check.countries_match_regions(df_transposed[column], exclude)
if args.experimental_checks:
experimental.correct_language(df_transposed[column], exclude)
# Transpose the DataFrame back before writing. This is probably wasteful to
# do every time since we technically only need to do it if we've done the
# countries/regions fix above, but I can't think of another way for now.
df_transposed_back = df_transposed.T
# Write
df_transposed_back.to_csv(args.output_file, index=False)
# Close the input and output files before exiting
args.input_file.close()
args.output_file.close()
sys.exit(0)