2021-03-19 15:04:13 +01:00
|
|
|
|
# SPDX-License-Identifier: GPL-3.0-only
|
|
|
|
|
|
2021-03-14 08:07:35 +01:00
|
|
|
|
import os
|
2021-03-11 09:52:20 +01:00
|
|
|
|
import re
|
2020-10-06 16:11:39 +02:00
|
|
|
|
from datetime import datetime, timedelta
|
|
|
|
|
|
2021-12-08 14:02:20 +01:00
|
|
|
|
import country_converter as coco
|
2019-07-26 22:14:10 +02:00
|
|
|
|
import pandas as pd
|
2020-10-06 16:11:39 +02:00
|
|
|
|
import requests
|
|
|
|
|
import requests_cache
|
2021-03-11 09:33:16 +01:00
|
|
|
|
import spdx_license_list
|
2021-02-21 12:01:25 +01:00
|
|
|
|
from colorama import Fore
|
2020-10-06 16:11:39 +02:00
|
|
|
|
from pycountry import languages
|
2021-03-11 09:52:20 +01:00
|
|
|
|
from stdnum import isbn as stdnum_isbn
|
|
|
|
|
from stdnum import issn as stdnum_issn
|
2019-07-26 22:14:10 +02:00
|
|
|
|
|
2021-03-19 09:22:21 +01:00
|
|
|
|
from csv_metadata_quality.util import is_mojibake
|
|
|
|
|
|
2019-07-28 16:47:28 +02:00
|
|
|
|
|
2019-07-26 22:14:10 +02:00
|
|
|
|
def issn(field):
|
|
|
|
|
"""Check if an ISSN is valid.
|
|
|
|
|
|
|
|
|
|
Prints the ISSN if invalid.
|
|
|
|
|
|
|
|
|
|
stdnum's is_valid() function never raises an exception.
|
|
|
|
|
|
|
|
|
|
See: https://arthurdejong.org/python-stdnum/doc/1.11/index.html#stdnum.module.is_valid
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
|
for value in field.split("||"):
|
2019-07-26 22:14:10 +02:00
|
|
|
|
|
2021-03-11 09:52:20 +01:00
|
|
|
|
if not stdnum_issn.is_valid(value):
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Invalid ISSN: {Fore.RESET}{value}")
|
2019-07-26 22:14:10 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-27 00:28:08 +02:00
|
|
|
|
|
2019-07-26 22:14:10 +02:00
|
|
|
|
|
|
|
|
|
def isbn(field):
|
|
|
|
|
"""Check if an ISBN is valid.
|
|
|
|
|
|
|
|
|
|
Prints the ISBN if invalid.
|
|
|
|
|
|
|
|
|
|
stdnum's is_valid() function never raises an exception.
|
|
|
|
|
|
|
|
|
|
See: https://arthurdejong.org/python-stdnum/doc/1.11/index.html#stdnum.module.is_valid
|
|
|
|
|
"""
|
|
|
|
|
|
2019-07-26 22:44:58 +02:00
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
2019-07-26 22:14:10 +02:00
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
|
for value in field.split("||"):
|
2019-07-26 22:14:10 +02:00
|
|
|
|
|
2021-03-11 09:52:20 +01:00
|
|
|
|
if not stdnum_isbn.is_valid(value):
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Invalid ISBN: {Fore.RESET}{value}")
|
2019-07-26 22:48:24 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-27 00:28:08 +02:00
|
|
|
|
|
2019-07-26 22:48:24 +02:00
|
|
|
|
|
2019-08-21 14:31:12 +02:00
|
|
|
|
def date(field, field_name):
|
2019-07-28 15:11:36 +02:00
|
|
|
|
"""Check if a date is valid.
|
|
|
|
|
|
|
|
|
|
In DSpace the issue date is usually 1990, 1990-01, or 1990-01-01, but it
|
|
|
|
|
could technically even include time as long as it is ISO8601.
|
|
|
|
|
|
|
|
|
|
Also checks for other invalid cases like missing and multiple dates.
|
|
|
|
|
|
|
|
|
|
Prints the date if invalid.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if pd.isna(field):
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Missing date ({field_name}).{Fore.RESET}")
|
2019-07-28 15:11:36 +02:00
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
|
multiple_dates = field.split("||")
|
2019-07-28 15:11:36 +02:00
|
|
|
|
|
|
|
|
|
# We don't allow multi-value date fields
|
|
|
|
|
if len(multiple_dates) > 1:
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(
|
|
|
|
|
f"{Fore.RED}Multiple dates not allowed ({field_name}): {Fore.RESET}{field}"
|
|
|
|
|
)
|
2019-07-28 15:11:36 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-28 15:11:36 +02:00
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Check if date is valid YYYY format
|
2019-08-29 00:10:39 +02:00
|
|
|
|
datetime.strptime(field, "%Y")
|
2019-07-28 15:11:36 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-28 15:11:36 +02:00
|
|
|
|
except ValueError:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Check if date is valid YYYY-MM format
|
2019-08-29 00:10:39 +02:00
|
|
|
|
datetime.strptime(field, "%Y-%m")
|
2019-07-28 15:11:36 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-28 15:11:36 +02:00
|
|
|
|
except ValueError:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Check if date is valid YYYY-MM-DD format
|
2019-08-29 00:10:39 +02:00
|
|
|
|
datetime.strptime(field, "%Y-%m-%d")
|
2019-07-28 15:11:36 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2021-02-04 20:39:14 +01:00
|
|
|
|
except ValueError:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Check if date is valid YYYY-MM-DDTHH:MM:SSZ format
|
|
|
|
|
datetime.strptime(field, "%Y-%m-%dT%H:%M:%SZ")
|
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-28 15:11:36 +02:00
|
|
|
|
except ValueError:
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Invalid date ({field_name}): {Fore.RESET}{field}")
|
2019-07-29 16:08:49 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-29 16:40:14 +02:00
|
|
|
|
|
2019-07-29 16:08:49 +02:00
|
|
|
|
|
2019-08-09 00:22:59 +02:00
|
|
|
|
def suspicious_characters(field, field_name):
|
2019-07-29 16:08:49 +02:00
|
|
|
|
"""Warn about suspicious characters.
|
|
|
|
|
|
|
|
|
|
Look for standalone characters that could indicate encoding or copy/paste
|
|
|
|
|
errors for languages with accents. For example: foreˆt should be forêt.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# List of suspicious characters, for example: ́ˆ~`
|
2019-08-29 00:10:39 +02:00
|
|
|
|
suspicious_characters = ["\u00B4", "\u02C6", "\u007E", "\u0060"]
|
2019-07-29 16:08:49 +02:00
|
|
|
|
|
|
|
|
|
for character in suspicious_characters:
|
2019-08-09 00:22:59 +02:00
|
|
|
|
# Find the position of the suspicious character in the string
|
|
|
|
|
suspicious_character_position = field.find(character)
|
|
|
|
|
|
|
|
|
|
# Python returns -1 if there is no match
|
|
|
|
|
if suspicious_character_position != -1:
|
|
|
|
|
# Create a temporary new string starting from the position of the
|
|
|
|
|
# suspicious character
|
|
|
|
|
field_subset = field[suspicious_character_position:]
|
|
|
|
|
|
|
|
|
|
# Print part of the metadata value starting from the suspicious
|
|
|
|
|
# character and spanning enough of the rest to give a preview,
|
|
|
|
|
# but not too much to cause the line to break in terminals with
|
|
|
|
|
# a default of 80 characters width.
|
2021-02-21 12:01:25 +01:00
|
|
|
|
suspicious_character_msg = f"{Fore.YELLOW}Suspicious character ({field_name}): {Fore.RESET}{field_subset}"
|
2019-08-29 00:10:39 +02:00
|
|
|
|
print(f"{suspicious_character_msg:1.80}")
|
2019-07-29 16:08:49 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-29 17:59:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def language(field):
|
2019-09-26 06:44:39 +02:00
|
|
|
|
"""Check if a language is valid ISO 639-1 (alpha 2) or ISO 639-3 (alpha 3).
|
2019-07-29 17:59:42 +02:00
|
|
|
|
|
|
|
|
|
Prints the value if it is invalid.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# need to handle "Other" values here...
|
|
|
|
|
|
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
|
for value in field.split("||"):
|
2019-07-29 17:59:42 +02:00
|
|
|
|
|
|
|
|
|
# After splitting, check if language value is 2 or 3 characters so we
|
2019-09-26 06:44:39 +02:00
|
|
|
|
# can check it against ISO 639-1 or ISO 639-3 accordingly.
|
2019-07-29 17:59:42 +02:00
|
|
|
|
if len(value) == 2:
|
2019-07-30 15:39:26 +02:00
|
|
|
|
if not languages.get(alpha_2=value):
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Invalid ISO 639-1 language: {Fore.RESET}{value}")
|
2019-07-29 17:59:42 +02:00
|
|
|
|
elif len(value) == 3:
|
2019-07-30 15:39:26 +02:00
|
|
|
|
if not languages.get(alpha_3=value):
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Invalid ISO 639-3 language: {Fore.RESET}{value}")
|
2019-07-29 17:59:42 +02:00
|
|
|
|
else:
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Invalid language: {Fore.RESET}{value}")
|
2019-07-29 17:59:42 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-07-29 23:30:31 +02:00
|
|
|
|
|
|
|
|
|
|
2019-08-01 22:51:58 +02:00
|
|
|
|
def agrovoc(field, field_name):
|
2019-07-29 23:30:31 +02:00
|
|
|
|
"""Check subject terms against AGROVOC REST API.
|
|
|
|
|
|
2019-08-01 22:51:58 +02:00
|
|
|
|
Function constructor expects the field as well as the field name because
|
|
|
|
|
many fields can now be validated against AGROVOC and we want to be able
|
|
|
|
|
to inform the user in which field the invalid term is.
|
|
|
|
|
|
2019-07-29 23:30:31 +02:00
|
|
|
|
Logic copied from agrovoc-lookup.py.
|
|
|
|
|
|
|
|
|
|
See: https://github.com/ilri/DSpace/blob/5_x-prod/agrovoc-lookup.py
|
|
|
|
|
|
|
|
|
|
Prints a warning if the value is invalid.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
2020-07-06 12:41:51 +02:00
|
|
|
|
# enable transparent request cache with thirty days expiry
|
|
|
|
|
expire_after = timedelta(days=30)
|
2021-03-14 08:07:35 +01:00
|
|
|
|
# Allow overriding the location of the requests cache, just in case we are
|
|
|
|
|
# running in an environment where we can't write to the current working di-
|
|
|
|
|
# rectory (for example from csv-metadata-quality-web).
|
|
|
|
|
REQUESTS_CACHE_DIR = os.environ.get("REQUESTS_CACHE_DIR", ".")
|
2021-03-16 15:12:33 +01:00
|
|
|
|
requests_cache.install_cache(
|
|
|
|
|
f"{REQUESTS_CACHE_DIR}/agrovoc-response-cache", expire_after=expire_after
|
|
|
|
|
)
|
2020-07-06 12:41:51 +02:00
|
|
|
|
|
|
|
|
|
# prune old cache entries
|
2021-07-06 14:24:39 +02:00
|
|
|
|
requests_cache.remove_expired_responses()
|
2020-07-06 12:41:51 +02:00
|
|
|
|
|
2019-07-29 23:30:31 +02:00
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
|
for value in field.split("||"):
|
2020-07-06 12:44:46 +02:00
|
|
|
|
request_url = "http://agrovoc.uniroma2.it/agrovoc/rest/v1/agrovoc/search"
|
|
|
|
|
request_params = {"query": value}
|
2019-08-21 15:35:29 +02:00
|
|
|
|
|
2020-07-06 12:44:46 +02:00
|
|
|
|
request = requests.get(request_url, params=request_params)
|
2019-08-21 15:35:29 +02:00
|
|
|
|
|
|
|
|
|
if request.status_code == requests.codes.ok:
|
|
|
|
|
data = request.json()
|
|
|
|
|
|
|
|
|
|
# check if there are any results
|
2019-08-29 00:10:39 +02:00
|
|
|
|
if len(data["results"]) == 0:
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.RED}Invalid AGROVOC ({field_name}): {Fore.RESET}{value}")
|
2019-07-29 23:30:31 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2019-08-10 22:41:16 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def filename_extension(field):
|
|
|
|
|
"""Check filename extension.
|
|
|
|
|
|
|
|
|
|
CSVs with a 'filename' column are likely meant as input for the SAFBuilder
|
|
|
|
|
tool, which creates a Simple Archive Format bundle for importing metadata
|
|
|
|
|
with accompanying PDFs or other files into DSpace.
|
|
|
|
|
|
|
|
|
|
This check warns if a filename has an uncommon extension (that is, other
|
|
|
|
|
than .pdf, .xls(x), .doc(x), ppt(x), case insensitive).
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
|
values = field.split("||")
|
2019-08-10 22:41:16 +02:00
|
|
|
|
|
|
|
|
|
# List of common filename extentions
|
2019-08-29 00:10:39 +02:00
|
|
|
|
common_filename_extensions = [
|
|
|
|
|
".pdf",
|
|
|
|
|
".doc",
|
|
|
|
|
".docx",
|
|
|
|
|
".ppt",
|
|
|
|
|
".pptx",
|
|
|
|
|
".xls",
|
|
|
|
|
".xlsx",
|
|
|
|
|
]
|
2019-08-10 22:41:16 +02:00
|
|
|
|
|
|
|
|
|
# Iterate over all values
|
|
|
|
|
for value in values:
|
|
|
|
|
# Assume filename extension does not match
|
|
|
|
|
filename_extension_match = False
|
|
|
|
|
|
|
|
|
|
for filename_extension in common_filename_extensions:
|
|
|
|
|
# Check for extension at the end of the filename
|
2019-08-29 00:10:39 +02:00
|
|
|
|
pattern = re.escape(filename_extension) + r"$"
|
2019-08-10 22:41:16 +02:00
|
|
|
|
match = re.search(pattern, value, re.IGNORECASE)
|
|
|
|
|
|
|
|
|
|
if match is not None:
|
|
|
|
|
# Register the match and stop checking for this filename
|
|
|
|
|
filename_extension_match = True
|
|
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
2019-08-10 22:52:53 +02:00
|
|
|
|
if filename_extension_match is False:
|
2021-02-21 12:01:25 +01:00
|
|
|
|
print(f"{Fore.YELLOW}Filename with uncommon extension: {Fore.RESET}{value}")
|
2019-08-10 22:41:16 +02:00
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2021-03-11 09:33:16 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def spdx_license_identifier(field):
|
|
|
|
|
"""Check if a license is a valid SPDX identifier.
|
|
|
|
|
|
|
|
|
|
Prints the value if it is invalid.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Try to split multi-value field on "||" separator
|
|
|
|
|
for value in field.split("||"):
|
|
|
|
|
if value not in spdx_license_list.LICENSES:
|
|
|
|
|
print(f"{Fore.YELLOW}Non-SPDX license identifier: {Fore.RESET}{value}")
|
|
|
|
|
|
2021-03-16 15:04:19 +01:00
|
|
|
|
return
|
2021-03-17 08:53:07 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def duplicate_items(df):
|
|
|
|
|
"""Attempt to identify duplicate items.
|
|
|
|
|
|
|
|
|
|
First we check the total number of titles and compare it with the number of
|
|
|
|
|
unique titles. If there are less unique titles than total titles we expand
|
|
|
|
|
the search by creating a key (of sorts) for each item that includes their
|
|
|
|
|
title, type, and date issued, and compare it with all the others. If there
|
|
|
|
|
are multiple occurrences of the same title, type, date string then it's a
|
|
|
|
|
very good indicator that the items are duplicates.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Extract the names of the title, type, and date issued columns so we can
|
|
|
|
|
# reference them later. First we filter columns by likely patterns, then
|
|
|
|
|
# we extract the name from the first item of the resulting object, ie:
|
|
|
|
|
#
|
|
|
|
|
# Index(['dcterms.title[en_US]'], dtype='object')
|
|
|
|
|
#
|
2021-10-06 18:32:40 +02:00
|
|
|
|
# But, we need to consider that dc.title.alternative might come before the
|
|
|
|
|
# main title in the CSV, so use a negative lookahead to eliminate that.
|
|
|
|
|
#
|
|
|
|
|
# See: https://regex101.com/r/elyXkW/1
|
|
|
|
|
title_column_name = df.filter(
|
|
|
|
|
regex=r"^(dc|dcterms)\.title(?!\.alternative).*$"
|
|
|
|
|
).columns[0]
|
|
|
|
|
type_column_name = df.filter(regex=r"^(dcterms\.type|dc\.type).*$").columns[0]
|
2021-03-17 08:53:07 +01:00
|
|
|
|
date_column_name = df.filter(
|
2021-10-06 18:32:40 +02:00
|
|
|
|
regex=r"^(dcterms\.issued|dc\.date\.accessioned).*$"
|
2021-03-17 08:53:07 +01:00
|
|
|
|
).columns[0]
|
|
|
|
|
|
|
|
|
|
items_count_total = df[title_column_name].count()
|
|
|
|
|
items_count_unique = df[title_column_name].nunique()
|
|
|
|
|
|
|
|
|
|
if items_count_unique < items_count_total:
|
|
|
|
|
# Create a list to hold our items while we check for duplicates
|
|
|
|
|
items = list()
|
|
|
|
|
|
|
|
|
|
for index, row in df.iterrows():
|
|
|
|
|
item_title_type_date = f"{row[title_column_name]}{row[type_column_name]}{row[date_column_name]}"
|
|
|
|
|
|
|
|
|
|
if item_title_type_date in items:
|
|
|
|
|
print(
|
|
|
|
|
f"{Fore.YELLOW}Possible duplicate ({title_column_name}): {Fore.RESET}{row[title_column_name]}"
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
items.append(item_title_type_date)
|
2021-03-19 09:22:21 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mojibake(field, field_name):
|
|
|
|
|
"""Check for mojibake (text that was encoded in one encoding and decoded in
|
|
|
|
|
in another, perhaps multiple times). See util.py.
|
|
|
|
|
|
|
|
|
|
Prints the string if it contains suspected mojibake.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(field):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if is_mojibake(field):
|
|
|
|
|
print(
|
|
|
|
|
f"{Fore.YELLOW}Possible encoding issue ({field_name}): {Fore.RESET}{field}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return
|
2021-10-06 20:25:39 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def citation_doi(row):
|
|
|
|
|
"""Check for the scenario where an item has a DOI listed in its citation,
|
|
|
|
|
but does not have a cg.identifier.doi field.
|
|
|
|
|
|
|
|
|
|
Function prints a warning if the DOI field is missing, but there is a DOI
|
|
|
|
|
in the citation.
|
|
|
|
|
"""
|
|
|
|
|
# Initialize some variables at global scope so that we can set them in the
|
|
|
|
|
# loop scope below and still be able to access them afterwards.
|
|
|
|
|
citation = ""
|
|
|
|
|
|
|
|
|
|
# Iterate over the labels of the current row's values to check if a DOI
|
|
|
|
|
# exists. If not, then we extract the citation to see if there is a DOI
|
|
|
|
|
# listed there.
|
|
|
|
|
for label in row.axes[0]:
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(row[label]):
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# If a DOI field exists we don't need to check the citation
|
|
|
|
|
match = re.match(r"^.*?doi.*$", label)
|
|
|
|
|
if match is not None:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Get the name of the citation field
|
|
|
|
|
match = re.match(r"^.*?[cC]itation.*$", label)
|
|
|
|
|
if match is not None:
|
|
|
|
|
citation = row[label]
|
|
|
|
|
|
|
|
|
|
if citation != "":
|
|
|
|
|
# Check the citation for "doi: 10.1186/1743-422X-9-218"
|
|
|
|
|
doi_match1 = re.match(r"^.*?doi:\s.*$", citation)
|
|
|
|
|
# Check the citation for a DOI URL (doi.org, dx.doi.org, etc)
|
|
|
|
|
doi_match2 = re.match(r"^.*?doi\.org.*$", citation)
|
|
|
|
|
if doi_match1 is not None or doi_match2 is not None:
|
|
|
|
|
print(
|
|
|
|
|
f"{Fore.YELLOW}DOI in citation, but missing a DOI field: {Fore.RESET}{citation}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return
|
2021-12-05 14:52:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def title_in_citation(row):
|
|
|
|
|
"""Check for the scenario where an item's title is missing from its cita-
|
|
|
|
|
tion. This could mean that it is missing entirely, or perhaps just exists
|
|
|
|
|
in a different format (whitespace, accents, etc).
|
|
|
|
|
|
|
|
|
|
Function prints a warning if the title does not appear in the citation.
|
|
|
|
|
"""
|
2021-12-05 15:21:44 +01:00
|
|
|
|
# Initialize some variables at global scope so that we can set them in the
|
|
|
|
|
# loop scope below and still be able to access them afterwards.
|
|
|
|
|
title = ""
|
|
|
|
|
citation = ""
|
|
|
|
|
|
2021-12-05 14:52:42 +01:00
|
|
|
|
# Iterate over the labels of the current row's values to get the names of
|
|
|
|
|
# the title and citation columns. Then we check if the title is present in
|
|
|
|
|
# the citation.
|
|
|
|
|
for label in row.axes[0]:
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
|
if pd.isna(row[label]):
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# Find the name of the title column
|
|
|
|
|
match = re.match(r"^(dc|dcterms)\.title.*$", label)
|
|
|
|
|
if match is not None:
|
2021-12-05 15:21:44 +01:00
|
|
|
|
title = row[label]
|
2021-12-05 14:52:42 +01:00
|
|
|
|
|
|
|
|
|
# Find the name of the citation column
|
|
|
|
|
match = re.match(r"^.*?[cC]itation.*$", label)
|
|
|
|
|
if match is not None:
|
2021-12-05 15:21:44 +01:00
|
|
|
|
citation = row[label]
|
2021-12-05 14:52:42 +01:00
|
|
|
|
|
2021-12-05 15:21:44 +01:00
|
|
|
|
if citation != "":
|
|
|
|
|
if title not in citation:
|
|
|
|
|
print(f"{Fore.YELLOW}Title is not present in citation: {Fore.RESET}{title}")
|
2021-12-05 14:52:42 +01:00
|
|
|
|
|
|
|
|
|
return
|
2021-12-08 14:02:20 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def countries_match_regions(row):
|
|
|
|
|
"""Check for the scenario where an item has country coverage metadata, but
|
|
|
|
|
does not have the corresponding region metadata. For example, an item that
|
|
|
|
|
has country coverage "Kenya" should also have region "Eastern Africa" acc-
|
|
|
|
|
ording to the UN M.49 classification scheme.
|
|
|
|
|
|
|
|
|
|
See: https://unstats.un.org/unsd/methodology/m49/
|
|
|
|
|
|
|
|
|
|
Function prints a warning if the appropriate region is not present.
|
|
|
|
|
"""
|
|
|
|
|
# Initialize some variables at global scope so that we can set them in the
|
|
|
|
|
# loop scope below and still be able to access them afterwards.
|
|
|
|
|
country_column_name = ""
|
|
|
|
|
region_column_name = ""
|
|
|
|
|
title_column_name = ""
|
|
|
|
|
|
|
|
|
|
# Iterate over the labels of the current row's values to get the names of
|
|
|
|
|
# the title and citation columns. Then we check if the title is present in
|
|
|
|
|
# the citation.
|
|
|
|
|
for label in row.axes[0]:
|
|
|
|
|
# Find the name of the country column
|
|
|
|
|
match = re.match(r"^.*?country.*$", label)
|
|
|
|
|
if match is not None:
|
|
|
|
|
country_column_name = label
|
|
|
|
|
|
|
|
|
|
# Find the name of the region column
|
|
|
|
|
match = re.match(r"^.*?region.*$", label)
|
|
|
|
|
if match is not None:
|
|
|
|
|
region_column_name = label
|
|
|
|
|
|
|
|
|
|
# Find the name of the title column
|
|
|
|
|
match = re.match(r"^(dc|dcterms)\.title.*$", label)
|
|
|
|
|
if match is not None:
|
|
|
|
|
title_column_name = label
|
|
|
|
|
|
|
|
|
|
# Make sure we found the country and region columns
|
|
|
|
|
if country_column_name != "" and region_column_name != "":
|
|
|
|
|
# If we don't have any countries then we should return early before
|
|
|
|
|
# suggesting regions.
|
|
|
|
|
if row[country_column_name] is not None:
|
|
|
|
|
countries = row[country_column_name].split("||")
|
|
|
|
|
else:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
if row[region_column_name] is not None:
|
|
|
|
|
regions = row[region_column_name].split("||")
|
|
|
|
|
else:
|
|
|
|
|
regions = list()
|
|
|
|
|
|
|
|
|
|
# An empty list for our regions so we can keep track for all countries
|
|
|
|
|
missing_regions = list()
|
|
|
|
|
|
|
|
|
|
for country in countries:
|
|
|
|
|
# Look up the UN M.49 regions for this country code. CoCo seems to
|
|
|
|
|
# only list the direct region, ie Western Africa, rather than all
|
|
|
|
|
# the parent regions ("Sub-Saharan Africa", "Africa", "World")
|
|
|
|
|
un_region = coco.convert(names=country, to="UNRegion")
|
|
|
|
|
|
|
|
|
|
if un_region not in regions:
|
|
|
|
|
if un_region not in missing_regions:
|
|
|
|
|
missing_regions.append(un_region)
|
|
|
|
|
|
|
|
|
|
if len(missing_regions) > 0:
|
|
|
|
|
for missing_region in missing_regions:
|
|
|
|
|
print(
|
|
|
|
|
f"{Fore.YELLOW}Missing region ({missing_region}): {Fore.RESET}{row[title_column_name]}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return
|