mirror of
https://github.com/ilri/dspace-statistics-api.git
synced 2024-12-23 13:04:39 +01:00
Alan Orth
40e284dac0
DSpace's stats-util script splits the Solr statistics core into yearly shards. We need to use Solr's `shards` query parameter in order to get the statistics for previous years. This commit adds a helper function to enumerate the active Solr cores to find yearly shards matching the statistics-YYYY pattern and add them to the query.
227 lines
8.6 KiB
Python
227 lines
8.6 KiB
Python
#
|
|
# indexer.py
|
|
#
|
|
# Copyright 2018 Alan Orth.
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
# ---
|
|
#
|
|
# Connects to a DSpace Solr statistics core and ingests item views and downloads
|
|
# into a PostgreSQL database for use by other applications (like an API).
|
|
#
|
|
# This script is written for Python 3.5+ and requires several modules that you
|
|
# can install with pip (I recommend using a Python virtual environment):
|
|
#
|
|
# $ pip install SolrClient psycopg2-binary
|
|
#
|
|
# See: https://solrclient.readthedocs.io/en/latest/SolrClient.html
|
|
# See: https://wiki.duraspace.org/display/DSPACE/Solr
|
|
|
|
from .database import DatabaseManager
|
|
import json
|
|
import psycopg2.extras
|
|
import re
|
|
import requests
|
|
from .solr import solr_connection
|
|
|
|
|
|
# Enumerate the cores in Solr to determine if statistics have been sharded into
|
|
# yearly shards by DSpace's stats-util or not (for example: statistics-2018).
|
|
def get_statistics_shards():
|
|
# Initialize an empty list for statistics core years
|
|
statistics_core_years = []
|
|
|
|
# URL for Solr status to check active cores
|
|
solr_url = solr.host + '/admin/cores?action=STATUS&wt=json'
|
|
res = requests.get(solr_url)
|
|
|
|
if res.status_code == requests.codes.ok:
|
|
data = res.json()
|
|
|
|
# Iterate over active cores from Solr's STATUS response (cores are in
|
|
# the status array of this response).
|
|
for core in data['status']:
|
|
# Pattern to match, for example: statistics-2018
|
|
pattern = re.compile('^statistics-[0-9]{4}$')
|
|
|
|
if not pattern.match(core):
|
|
continue
|
|
|
|
# Append current core to list
|
|
statistics_core_years.append(core)
|
|
|
|
# Initialize a string to hold our shards (may end up being empty if the Solr
|
|
# core has not been processed by stats-util).
|
|
shards = str()
|
|
|
|
if len(statistics_core_years) > 0:
|
|
# Begin building a string of shards starting with the default one
|
|
shards = '{}/statistics'.format(solr.host)
|
|
|
|
for core in statistics_core_years:
|
|
# Create a comma-separated list of shards to pass to our Solr query
|
|
#
|
|
# See: https://wiki.apache.org/solr/DistributedSearch
|
|
shards += ',{}/{}'.format(solr.host, core)
|
|
|
|
# Return the string of shards, which may actually be empty. Solr doesn't
|
|
# seem to mind if the shards query parameter is empty and I haven't seen
|
|
# any negative performance impact so this should be fine.
|
|
return shards
|
|
|
|
|
|
def index_views():
|
|
# get total number of distinct facets for items with a minimum of 1 view,
|
|
# otherwise Solr returns all kinds of weird ids that are actually not in
|
|
# the database. Also, stats are expensive, but we need stats.calcdistinct
|
|
# so we can get the countDistinct summary.
|
|
#
|
|
# see: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
|
|
res = solr.query('statistics', {
|
|
'q': 'type:2',
|
|
'fq': 'isBot:false AND statistics_type:view',
|
|
'facet': True,
|
|
'facet.field': 'id',
|
|
'facet.mincount': 1,
|
|
'facet.limit': 1,
|
|
'facet.offset': 0,
|
|
'stats': True,
|
|
'stats.field': 'id',
|
|
'stats.calcdistinct': True,
|
|
'shards': shards
|
|
}, rows=0)
|
|
|
|
# get total number of distinct facets (countDistinct)
|
|
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['id']['countDistinct']
|
|
|
|
# divide results into "pages" (cast to int to effectively round down)
|
|
results_per_page = 100
|
|
results_num_pages = int(results_totalNumFacets / results_per_page)
|
|
results_current_page = 0
|
|
|
|
with DatabaseManager() as db:
|
|
with db.cursor() as cursor:
|
|
# create an empty list to store values for batch insertion
|
|
data = []
|
|
|
|
while results_current_page <= results_num_pages:
|
|
print('Indexing item views (page {} of {})'.format(results_current_page, results_num_pages))
|
|
|
|
res = solr.query('statistics', {
|
|
'q': 'type:2',
|
|
'fq': 'isBot:false AND statistics_type:view',
|
|
'facet': True,
|
|
'facet.field': 'id',
|
|
'facet.mincount': 1,
|
|
'facet.limit': results_per_page,
|
|
'facet.offset': results_current_page * results_per_page,
|
|
'shards': shards
|
|
}, rows=0)
|
|
|
|
# SolrClient's get_facets() returns a dict of dicts
|
|
views = res.get_facets()
|
|
# in this case iterate over the 'id' dict and get the item ids and views
|
|
for item_id, item_views in views['id'].items():
|
|
data.append((item_id, item_views))
|
|
|
|
# do a batch insert of values from the current "page" of results
|
|
sql = 'INSERT INTO items(id, views) VALUES %s ON CONFLICT(id) DO UPDATE SET views=excluded.views'
|
|
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
|
|
db.commit()
|
|
|
|
# clear all items from the list so we can populate it with the next batch
|
|
data.clear()
|
|
|
|
results_current_page += 1
|
|
|
|
|
|
def index_downloads():
|
|
# get the total number of distinct facets for items with at least 1 download
|
|
res = solr.query('statistics', {
|
|
'q': 'type:0',
|
|
'fq': 'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
|
|
'facet': True,
|
|
'facet.field': 'owningItem',
|
|
'facet.mincount': 1,
|
|
'facet.limit': 1,
|
|
'facet.offset': 0,
|
|
'stats': True,
|
|
'stats.field': 'owningItem',
|
|
'stats.calcdistinct': True,
|
|
'shards': shards
|
|
}, rows=0)
|
|
|
|
# get total number of distinct facets (countDistinct)
|
|
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['owningItem']['countDistinct']
|
|
|
|
# divide results into "pages" (cast to int to effectively round down)
|
|
results_per_page = 100
|
|
results_num_pages = int(results_totalNumFacets / results_per_page)
|
|
results_current_page = 0
|
|
|
|
with DatabaseManager() as db:
|
|
with db.cursor() as cursor:
|
|
# create an empty list to store values for batch insertion
|
|
data = []
|
|
|
|
while results_current_page <= results_num_pages:
|
|
print('Indexing item downloads (page {} of {})'.format(results_current_page, results_num_pages))
|
|
|
|
res = solr.query('statistics', {
|
|
'q': 'type:0',
|
|
'fq': 'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
|
|
'facet': True,
|
|
'facet.field': 'owningItem',
|
|
'facet.mincount': 1,
|
|
'facet.limit': results_per_page,
|
|
'facet.offset': results_current_page * results_per_page,
|
|
'shards': shards
|
|
}, rows=0)
|
|
|
|
# SolrClient's get_facets() returns a dict of dicts
|
|
downloads = res.get_facets()
|
|
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
|
|
for item_id, item_downloads in downloads['owningItem'].items():
|
|
data.append((item_id, item_downloads))
|
|
|
|
# do a batch insert of values from the current "page" of results
|
|
sql = 'INSERT INTO items(id, downloads) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads'
|
|
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
|
|
db.commit()
|
|
|
|
# clear all items from the list so we can populate it with the next batch
|
|
data.clear()
|
|
|
|
results_current_page += 1
|
|
|
|
|
|
solr = solr_connection()
|
|
|
|
with DatabaseManager() as db:
|
|
with db.cursor() as cursor:
|
|
# create table to store item views and downloads
|
|
cursor.execute('''CREATE TABLE IF NOT EXISTS items
|
|
(id INT PRIMARY KEY, views INT DEFAULT 0, downloads INT DEFAULT 0)''')
|
|
|
|
# commit the table creation before closing the database connection
|
|
db.commit()
|
|
|
|
shards = get_statistics_shards()
|
|
|
|
index_views()
|
|
index_downloads()
|
|
|
|
# vim: set sw=4 ts=4 expandtab:
|