1
0
mirror of https://github.com/ilri/dspace-statistics-api.git synced 2024-11-16 19:37:04 +01:00
dspace-statistics-api/dspace_statistics_api/indexer.py
Alan Orth 250fd8164f dspace_statistics_api/indexer.py: Use UUID
DSpace 6+ uses a UUID for item identifiers instead of an integer so
we need to update the PostgreSQL schema accordingly. Solr still re-
fers to them as "id" in its schema so we don't need to change anyt-
hing there.
2020-03-01 21:22:10 +02:00

279 lines
10 KiB
Python

#
# indexer.py
#
# Copyright 2018 Alan Orth.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ---
#
# Connects to a DSpace Solr statistics core and ingests item views and downloads
# into a PostgreSQL database for use by other applications (like an API).
#
# This script is written for Python 3.5+ and requires several modules that you
# can install with pip (I recommend using a Python virtual environment):
#
# $ pip install SolrClient psycopg2-binary
#
# See: https://solrclient.readthedocs.io/en/latest/SolrClient.html
# See: https://wiki.duraspace.org/display/DSPACE/Solr
import re
import psycopg2.extras
import requests
from .config import SOLR_SERVER
from .database import DatabaseManager
# Enumerate the cores in Solr to determine if statistics have been sharded into
# yearly shards by DSpace's stats-util or not (for example: statistics-2018).
def get_statistics_shards():
# Initialize an empty list for statistics core years
statistics_core_years = []
# URL for Solr status to check active cores
solr_query_params = {"action": "STATUS", "wt": "json"}
solr_url = SOLR_SERVER + "/admin/cores"
res = requests.get(solr_url, params=solr_query_params)
if res.status_code == requests.codes.ok:
data = res.json()
# Iterate over active cores from Solr's STATUS response (cores are in
# the status array of this response).
for core in data["status"]:
# Pattern to match, for example: statistics-2018
pattern = re.compile("^statistics-[0-9]{4}$")
if not pattern.match(core):
continue
# Append current core to list
statistics_core_years.append(core)
# Initialize a string to hold our shards (may end up being empty if the Solr
# core has not been processed by stats-util).
shards = str()
if len(statistics_core_years) > 0:
# Begin building a string of shards starting with the default one
shards = "{}/statistics".format(SOLR_SERVER)
for core in statistics_core_years:
# Create a comma-separated list of shards to pass to our Solr query
#
# See: https://wiki.apache.org/solr/DistributedSearch
shards += ",{}/{}".format(SOLR_SERVER, core)
# Return the string of shards, which may actually be empty. Solr doesn't
# seem to mind if the shards query parameter is empty and I haven't seen
# any negative performance impact so this should be fine.
return shards
def index_views():
# get total number of distinct facets for items with a minimum of 1 view,
# otherwise Solr returns all kinds of weird ids that are actually not in
# the database. Also, stats are expensive, but we need stats.calcdistinct
# so we can get the countDistinct summary.
#
# see: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
solr_query_params = {
"q": "type:2",
"fq": "isBot:false AND statistics_type:view",
"facet": "true",
"facet.field": "id",
"facet.mincount": 1,
"facet.limit": 1,
"facet.offset": 0,
"stats": "true",
"stats.field": "id",
"stats.calcdistinct": "true",
"shards": shards,
"rows": 0,
"wt": "json",
}
solr_url = SOLR_SERVER + "/statistics/select"
res = requests.get(solr_url, params=solr_query_params)
try:
# get total number of distinct facets (countDistinct)
results_totalNumFacets = res.json()["stats"]["stats_fields"]["id"][
"countDistinct"
]
except TypeError:
print("No item views to index, exiting.")
exit(0)
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
with DatabaseManager() as db:
with db.cursor() as cursor:
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
# "pages" are zero based, but one based is more human readable
print(
"Indexing item views (page {} of {})".format(
results_current_page + 1, results_num_pages + 1
)
)
solr_query_params = {
"q": "type:2",
"fq": "isBot:false AND statistics_type:view",
"facet": "true",
"facet.field": "id",
"facet.mincount": 1,
"facet.limit": results_per_page,
"facet.offset": results_current_page * results_per_page,
"shards": shards,
"rows": 0,
"wt": "json",
"json.nl": "map", # return facets as a dict instead of a flat list
}
solr_url = SOLR_SERVER + "/statistics/select"
res = requests.get(solr_url, params=solr_query_params)
# Solr returns facets as a dict of dicts (see json.nl parameter)
views = res.json()["facet_counts"]["facet_fields"]
# iterate over the 'id' dict and get the item ids and views
for item_id, item_views in views["id"].items():
data.append((item_id, item_views))
# do a batch insert of values from the current "page" of results
sql = "INSERT INTO items(id, views) VALUES %s ON CONFLICT(id) DO UPDATE SET views=excluded.views"
psycopg2.extras.execute_values(cursor, sql, data, template="(%s, %s)")
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
def index_downloads():
# get the total number of distinct facets for items with at least 1 download
solr_query_params = {
"q": "type:0",
"fq": "isBot:false AND statistics_type:view AND bundleName:ORIGINAL",
"facet": "true",
"facet.field": "owningItem",
"facet.mincount": 1,
"facet.limit": 1,
"facet.offset": 0,
"stats": "true",
"stats.field": "owningItem",
"stats.calcdistinct": "true",
"shards": shards,
"rows": 0,
"wt": "json",
}
solr_url = SOLR_SERVER + "/statistics/select"
res = requests.get(solr_url, params=solr_query_params)
try:
# get total number of distinct facets (countDistinct)
results_totalNumFacets = res.json()["stats"]["stats_fields"]["owningItem"][
"countDistinct"
]
except TypeError:
print("No item downloads to index, exiting.")
exit(0)
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
with DatabaseManager() as db:
with db.cursor() as cursor:
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
# "pages" are zero based, but one based is more human readable
print(
"Indexing item downloads (page {} of {})".format(
results_current_page + 1, results_num_pages + 1
)
)
solr_query_params = {
"q": "type:0",
"fq": "isBot:false AND statistics_type:view AND bundleName:ORIGINAL",
"facet": "true",
"facet.field": "owningItem",
"facet.mincount": 1,
"facet.limit": results_per_page,
"facet.offset": results_current_page * results_per_page,
"shards": shards,
"rows": 0,
"wt": "json",
"json.nl": "map", # return facets as a dict instead of a flat list
}
solr_url = SOLR_SERVER + "/statistics/select"
res = requests.get(solr_url, params=solr_query_params)
# Solr returns facets as a dict of dicts (see json.nl parameter)
downloads = res.json()["facet_counts"]["facet_fields"]
# iterate over the 'owningItem' dict and get the item ids and downloads
for item_id, item_downloads in downloads["owningItem"].items():
data.append((item_id, item_downloads))
# do a batch insert of values from the current "page" of results
sql = "INSERT INTO items(id, downloads) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads"
psycopg2.extras.execute_values(cursor, sql, data, template="(%s, %s)")
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
with DatabaseManager() as db:
with db.cursor() as cursor:
# create table to store item views and downloads
cursor.execute(
"""CREATE TABLE IF NOT EXISTS items
(id UUID PRIMARY KEY, views INT DEFAULT 0, downloads INT DEFAULT 0)"""
)
# commit the table creation before closing the database connection
db.commit()
shards = get_statistics_shards()
index_views()
index_downloads()
# vim: set sw=4 ts=4 expandtab: