mirror of
https://github.com/ilri/dspace-statistics-api.git
synced 2024-11-14 18:37:03 +01:00
Alan Orth
6fd2827a7c
Falcon can optionally use ujson to speed up JSON (de)serialization, but Falcon's already really fast and requiring ujson actually makes deployment trickier in some cases (for example in Docker containers that are based on Alpine Linux). Here are some tests of Falcon 1.4.1 on Python 3.5 from my laptop: 1. falcon...............60172 req/sec or 16.62 μs/req (36x) 2. falcon-ext...........34186 req/sec or 29.25 μs/req (20x) 3. bottle...............32924 req/sec or 30.37 μs/req (20x) 4. werkzeug.............11948 req/sec or 83.70 μs/req (7x) 5. flask.................6654 req/sec or 150.30 μs/req (4x) 6. django................4565 req/sec or 219.04 μs/req (3x) 7. pecan.................1672 req/sec or 598.19 μs/req (1x) The tests were conducted with Falcon's official Docker benchmarking tools on my Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz on Arch Linux. See: https://github.com/falconry/falcon/tree/master/docker
174 lines
6.2 KiB
Python
Executable File
174 lines
6.2 KiB
Python
Executable File
#!/usr/bin/env python
|
|
#
|
|
# indexer.py
|
|
#
|
|
# Copyright 2018 Alan Orth.
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
# ---
|
|
#
|
|
# Connects to a DSpace Solr statistics core and ingests item views and downloads
|
|
# into a PostgreSQL database for use by other applications (like an API).
|
|
#
|
|
# This script is written for Python 3.5+ and requires several modules that you
|
|
# can install with pip (I recommend using a Python virtual environment):
|
|
#
|
|
# $ pip install SolrClient psycopg2-binary
|
|
#
|
|
# See: https://solrclient.readthedocs.io/en/latest/SolrClient.html
|
|
# See: https://wiki.duraspace.org/display/DSPACE/Solr
|
|
|
|
from database import database_connection
|
|
import json
|
|
import psycopg2.extras
|
|
from solr import solr_connection
|
|
|
|
def index_views():
|
|
# get total number of distinct facets for items with a minimum of 1 view,
|
|
# otherwise Solr returns all kinds of weird ids that are actually not in
|
|
# the database. Also, stats are expensive, but we need stats.calcdistinct
|
|
# so we can get the countDistinct summary.
|
|
#
|
|
# see: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
|
|
res = solr.query('statistics', {
|
|
'q':'type:2',
|
|
'fq':'isBot:false AND statistics_type:view',
|
|
'facet':True,
|
|
'facet.field':'id',
|
|
'facet.mincount':1,
|
|
'facet.limit':1,
|
|
'facet.offset':0,
|
|
'stats':True,
|
|
'stats.field':'id',
|
|
'stats.calcdistinct':True
|
|
}, rows=0)
|
|
|
|
# get total number of distinct facets (countDistinct)
|
|
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['id']['countDistinct']
|
|
|
|
# divide results into "pages" (cast to int to effectively round down)
|
|
results_per_page = 100
|
|
results_num_pages = int(results_totalNumFacets / results_per_page)
|
|
results_current_page = 0
|
|
|
|
cursor = db.cursor()
|
|
|
|
# create an empty list to store values for batch insertion
|
|
data = []
|
|
|
|
while results_current_page <= results_num_pages:
|
|
print('Indexing item views (page {} of {})'.format(results_current_page, results_num_pages))
|
|
|
|
res = solr.query('statistics', {
|
|
'q':'type:2',
|
|
'fq':'isBot:false AND statistics_type:view',
|
|
'facet':True,
|
|
'facet.field':'id',
|
|
'facet.mincount':1,
|
|
'facet.limit':results_per_page,
|
|
'facet.offset':results_current_page * results_per_page
|
|
}, rows=0)
|
|
|
|
# SolrClient's get_facets() returns a dict of dicts
|
|
views = res.get_facets()
|
|
# in this case iterate over the 'id' dict and get the item ids and views
|
|
for item_id, item_views in views['id'].items():
|
|
data.append((item_id, item_views))
|
|
|
|
# do a batch insert of values from the current "page" of results
|
|
sql = 'INSERT INTO items(id, views) VALUES %s ON CONFLICT(id) DO UPDATE SET views=excluded.views'
|
|
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
|
|
db.commit()
|
|
|
|
# clear all items from the list so we can populate it with the next batch
|
|
data.clear()
|
|
|
|
results_current_page += 1
|
|
|
|
cursor.close()
|
|
|
|
def index_downloads():
|
|
# get the total number of distinct facets for items with at least 1 download
|
|
res = solr.query('statistics', {
|
|
'q':'type:0',
|
|
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
|
|
'facet':True,
|
|
'facet.field':'owningItem',
|
|
'facet.mincount':1,
|
|
'facet.limit':1,
|
|
'facet.offset':0,
|
|
'stats':True,
|
|
'stats.field':'owningItem',
|
|
'stats.calcdistinct':True
|
|
}, rows=0)
|
|
|
|
# get total number of distinct facets (countDistinct)
|
|
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['owningItem']['countDistinct']
|
|
|
|
# divide results into "pages" (cast to int to effectively round down)
|
|
results_per_page = 100
|
|
results_num_pages = int(results_totalNumFacets / results_per_page)
|
|
results_current_page = 0
|
|
|
|
cursor = db.cursor()
|
|
|
|
# create an empty list to store values for batch insertion
|
|
data = []
|
|
|
|
while results_current_page <= results_num_pages:
|
|
print('Indexing item downloads (page {} of {})'.format(results_current_page, results_num_pages))
|
|
|
|
res = solr.query('statistics', {
|
|
'q':'type:0',
|
|
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
|
|
'facet':True,
|
|
'facet.field':'owningItem',
|
|
'facet.mincount':1,
|
|
'facet.limit':results_per_page,
|
|
'facet.offset':results_current_page * results_per_page
|
|
}, rows=0)
|
|
|
|
# SolrClient's get_facets() returns a dict of dicts
|
|
downloads = res.get_facets()
|
|
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
|
|
for item_id, item_downloads in downloads['owningItem'].items():
|
|
data.append((item_id, item_downloads))
|
|
|
|
# do a batch insert of values from the current "page" of results
|
|
sql = 'INSERT INTO items(id, downloads) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads'
|
|
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
|
|
db.commit()
|
|
|
|
# clear all items from the list so we can populate it with the next batch
|
|
data.clear()
|
|
|
|
results_current_page += 1
|
|
|
|
cursor.close()
|
|
|
|
db = database_connection()
|
|
solr = solr_connection()
|
|
|
|
# create table to store item views and downloads
|
|
cursor = db.cursor()
|
|
cursor.execute('''CREATE TABLE IF NOT EXISTS items
|
|
(id INT PRIMARY KEY, views INT DEFAULT 0, downloads INT DEFAULT 0)''')
|
|
index_views()
|
|
index_downloads()
|
|
|
|
db.close()
|
|
|
|
# vim: set sw=4 ts=4 expandtab:
|