1
0
mirror of https://github.com/ilri/dspace-statistics-api.git synced 2025-05-10 15:16:02 +02:00

Compare commits

..

33 Commits

Author SHA1 Message Date
6bf34235d4 CHANGELOG.md: Move unreleased changes to version 0.4.0 2018-09-26 02:51:27 +03:00
e604d8ca81 indexer.py: Major refactor
Basically Solr's numFound has nothing to do with the actual number
of distinct facets that are returned. You need to use Solr's stats
component to get the number of distinct facets, aka countDistinct.
This is apparently deprecated in newer Solr versions, but we're on
version 4.10 and it works there.

Also, I realized that there is no need to return facets for items
without any views or downloads. Using facet.mincount=1 reduces the
result set size and also means we can store less data in the data-
base. The API returns HTTP 404 Not Found if an item is not in the
database anyways.

I can't figure it out exactly, but there is some weird issue with
Solr's facet results when you don't use facet.mincount=1. For some
reason you get tons of results with an id that doesn't even exist
in the document database, let alone as an actual DSpace item!

See: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
2018-09-26 02:41:10 +03:00
fc35b816f3 CHANGELOG.md: Add unreleased changes 2018-09-25 23:09:44 +03:00
9e6a2f7559 contrib/dspace-statistics-indexer.timer: Fix syntax
You can test OnCalendar strings using systemd-analyze calendar, eg:

    # systemd-analyze calendar '*-*-* 06:00:00,18:00:00'
    Failed to parse calendar specification '*-*-* 06:00:00,18:00:00':
    Invalid argument
    # systemd-analyze calendar '*-*-* 06,18:00:00'
    Normalized form: *-*-* 06,18:00:00
        Next elapse: Wed 2018-09-26 06:00:00 EEST
           (in UTC): Wed 2018-09-26 03:00:00 UTC
           From now: 6h left
2018-09-25 23:07:03 +03:00
46cfc3ffbc CHANGELOG.md: Release version 0.3.2 2018-09-25 13:14:08 +03:00
2850035a4c Return HTTP 404 when an item id is not found 2018-09-25 13:12:53 +03:00
c0b550109a README.md: Improve wording 2018-09-25 12:24:52 +03:00
bfceffd84d indexer.py: Improve inline documentation 2018-09-25 12:23:31 +03:00
d0552f5047 CHANGELOG.md: Move unreleased changes to version 0.3.1 2018-09-25 12:18:26 +03:00
c3a0bf7f44 CHANGELOG.md: Add Python 3.7 to Travis CI config 2018-09-25 12:17:49 +03:00
6e47e9c9ee .travis.yml: Add Python 3.7 2018-09-25 12:17:20 +03:00
cd90d618d6 CHANGELOG.md: Fix error in old release 2018-09-25 12:17:01 +03:00
280d211d56 CHANGELOG.md: Add note about kazoo 2.5.0 2018-09-25 12:12:10 +03:00
806d63137f requirements.txt: Use kazoo 2.5.0
SolrClient 0.2.1 currently depends on kazoo 2.2.1, but there is an
issue with Python 3.7 in kazoo <= 2.5.0. Kazoo 2.5.0 fixes the is-
sue with Python 3.7, and for my limited usage of SolrClient it se-
ems to work fine.

See: https://github.com/moonlitesolutions/SolrClient/issues/79
2018-09-25 12:08:28 +03:00
f7c7390e4f README.md: Add note about Python 3.7 2018-09-25 12:07:58 +03:00
702724e8a4 CHANGELOG.md: Move unreleased changes to version 0.3.0 2018-09-25 11:38:36 +03:00
36818d03ef CHANGELOG.md: Update unreleased changes 2018-09-25 11:37:56 +03:00
4cf8656b35 Change / route to /items
I think it's more obvious if the "all items" route is plural. Also,
this will allow me to eventually put documentation at the root.
2018-09-25 11:34:07 +03:00
f30a464cd1 README.md: Add notes about API endpoints 2018-09-25 11:28:12 +03:00
93ae12e313 README.md: Update introduction 2018-09-25 11:15:12 +03:00
dc978e9333 CHANGELOG.md: Add note about requirements.txt and Travis CI 2018-09-25 11:09:02 +03:00
295436fea0 Add .travis.yml 2018-09-25 11:08:01 +03:00
46a1476ab0 Add requirements.txt
Generated with `pip freeze`. This is so I can pin the versions of
packages that I've tested with as well as to allow Travis to test
whether the project runs on various Pythons and to let GitHub in-
form me of vulnerabilities in some libraries.
2018-09-25 11:02:50 +03:00
87dbb6c4df CHANGELOG.md: Release version 0.2.1 2018-09-25 02:21:44 +03:00
3160c44566 app.py: Remove comment
This comment was added when I first began the application and the
testing status is documented in the README now.
2018-09-25 02:20:51 +03:00
4b72f626d9 Update string substitution format
Instead of doing numbered strings I will just depend on the order,
at least to be consistent.
2018-09-25 02:19:29 +03:00
2d3b7620e3 CHANGELOG.md: Add note about psycopg2.extras.DictCursor 2018-09-25 02:08:54 +03:00
6e4bc630f7 database.py: Use psycopg2.extras.DictCursor
This allows us to access records using their column name. I didn't
notice that this was not working, as I had been testing the wrong
server!

See: http://initd.org/psycopg/docs/extras.html
2018-09-25 02:06:29 +03:00
44884140e5 CHANGELOG.md: Add new unreleased changes 2018-09-25 01:11:37 +03:00
74ff86ee3b contrib: Update environment settings in system units 2018-09-25 01:10:14 +03:00
3327884f21 Update docs to remove SQLite stuff
I've decided to use PostgreSQL instead of SQLite because the UPSERT
support is available in versions of PostgreSQL we're alread running,
whereas SQLite needs a VERY new (3.24.0) version that is not avail-
able on any recent long-term support Ubuntu releases.
2018-09-25 00:56:01 +03:00
8f7450f67a Use PostgreSQL instead of SQLite
I was very surprised how easy and fast and robust SQLite was, but in
the end I realized that its UPSERT support only came in version 3.24
and both Ubuntu 16.04 and 18.04 have older versions than that! I did
manage to install libsqlite3-0 from Ubuntu 18.04 cosmic on my xenial
host, but that feels dirty.

PostgreSQL has support for UPSERT since 9.5, not to mention the same
nice LIMIT and OFFSET clauses.
2018-09-25 00:49:47 +03:00
28d61fb041 README.md: Add notes about Python and SQLite versions 2018-09-24 17:26:48 +03:00
12 changed files with 177 additions and 82 deletions

1
.gitignore vendored
View File

@ -1,3 +1,2 @@
__pycache__
venv
*.db

9
.travis.yml Normal file
View File

@ -0,0 +1,9 @@
language: python
python:
- "3.5"
- "3.6"
- "3.7"
install:
- pip install -r requirements.txt
# vim: ts=2 sw=2 et

View File

@ -4,6 +4,38 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.4.0] - 2018-09-25
### Fixed
- Invalid OnCalendar syntax in dspace-statistics-indexer.timer
- Major logic error in indexer.py
## [0.3.2] - 2018-09-25
## Changed
- /item/id route now returns HTTP 404 if an item is not found
## [0.3.1] - 2018-09-25
### Changed
- Force SolrClient's kazoo dependency to version 2.5.0 to work with Python 3.7
- Add Python 3.7 to Travis CI configuration
## [0.3.0] - 2018-09-25
### Added
- requirements.txt for pip
- Travis CI build configuration for Python 3.5 and 3.6
- Documentation on using the API
### Changed
- The "all items" route from / to /items
## [0.2.1] - 2018-09-24
### Changed
- Environment settings in example systemd unit files
- Use psycopg2.extras.DictCursor for PostgreSQL connection
## [0.2.0] - 2018-09-24
### Changed
- Use PostgreSQL instead of SQLite because UPSERT support needs a very new libsqlite3 whereas it's already in PostgreSQL 9.5+
## [0.1.0] - 2018-09-24
### Changed
- Rename project to "DSpace Statistics API"

View File

@ -1,22 +1,30 @@
# DSpace Statistics API
A quick and dirty REST API to expose Solr view and download statistics for items in a DSpace repository.
Written and tested in Python 3.6. SolrClient (0.2.1) does not currently run in Python 3.7.0.
Written and tested in Python 3.5, 3.6, and 3.7. Requires PostgreSQL version 9.5 or greater for [`UPSERT` support](https://wiki.postgresql.org/wiki/UPSERT).
## Installation
Create a virtual environment and run it:
$ virtualenv -p /usr/bin/python3.6 venv
$ python -m venv venv
$ . venv/bin/activate
$ pip install falcon gunicorn SolrClient
$ pip install -r requirements.txt
$ gunicorn app:api
## Using the API
The API exposes the following endpoints:
- GET `/items`return views and downloads for all items that Solr knows about¹. Accepts `limit` and `page` query parameters for pagination of results.
- GET `/item/id`return views and downloads for a single item (*id* must be a positive integer). Returns HTTP 404 if an item id is not found.
¹ We are querying the Solr statistics core, which technically only knows about items that have either views or downloads.
## Todo
- Add API documentation
- Close up DB connection when gunicorn shuts down gracefully
- Better logging
- Return HTTP 404 when item_id is nonexistent
- Tests
## License
This work is licensed under the [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).

24
app.py
View File

@ -1,12 +1,9 @@
# Tested with Python 3.6
# See DSpace Solr docs for tips about parameters
# https://wiki.duraspace.org/display/DSPACE/Solr
from database import database_connection_ro
from database import database_connection
import falcon
from solr import solr_connection
db = database_connection_ro()
db = database_connection()
db.set_session(readonly=True)
solr = solr_connection()
class AllItemsResource:
@ -24,7 +21,7 @@ class AllItemsResource:
pages = round(cursor.fetchone()[0] / limit)
# get statistics, ordered by id, and use limit and offset to page through results
cursor.execute('SELECT id, views, downloads FROM items ORDER BY id ASC LIMIT {0} OFFSET {1}'.format(limit, offset))
cursor.execute('SELECT id, views, downloads FROM items ORDER BY id ASC LIMIT {} OFFSET {}'.format(limit, offset))
results = cursor.fetchmany(limit)
cursor.close()
@ -49,9 +46,14 @@ class ItemResource:
"""Handles GET requests"""
cursor = db.cursor()
cursor.execute('SELECT views, downloads FROM items WHERE id={0}'.format(item_id))
cursor.execute('SELECT views, downloads FROM items WHERE id={}'.format(item_id))
if cursor.rowcount == 0:
raise falcon.HTTPNotFound(
title='Item not found',
description='The item with id "{}" was not found.'.format(item_id)
)
else:
results = cursor.fetchone()
cursor.close()
statistics = {
'id': item_id,
@ -61,8 +63,10 @@ class ItemResource:
resp.media = statistics
cursor.close()
api = falcon.API()
api.add_route('/', AllItemsResource())
api.add_route('/items', AllItemsResource())
api.add_route('/item/{item_id:int}', ItemResource())
# vim: set sw=4 ts=4 expandtab:

View File

@ -3,6 +3,9 @@ import os
# Check if Solr connection information was provided in the environment
SOLR_SERVER = os.environ.get('SOLR_SERVER', 'http://localhost:8080/solr')
SQLITE_DB = os.environ.get('SQLITE_DB', 'statistics.db')
DATABASE_NAME = os.environ.get('DATABASE_NAME', 'dspacestatistics')
DATABASE_USER = os.environ.get('DATABASE_USER', 'dspacestatistics')
DATABASE_PASS = os.environ.get('DATABASE_PASS', 'dspacestatistics')
DATABASE_HOST = os.environ.get('DATABASE_HOST', 'localhost')
# vim: set sw=4 ts=4 expandtab:

View File

@ -3,7 +3,10 @@ Description=DSpace Statistics API
After=network.target
[Service]
Environment=SOLR_SERVER=http://localhost:8081/solr
Environment=DATABASE_NAME=dspacestatistics
Environment=DATABASE_USER=dspacestatistics
Environment=DATABASE_PASS=dspacestatistics
Environment=DATABASE_HOST=localhost
User=nobody
Group=nogroup
WorkingDirectory=/opt/ilri/dspace-statistics-api

View File

@ -4,6 +4,10 @@ After=tomcat7.target
[Service]
Environment=SOLR_SERVER=http://localhost:8081/solr
Environment=DATABASE_NAME=dspacestatistics
Environment=DATABASE_USER=dspacestatistics
Environment=DATABASE_PASS=dspacestatistics
Environment=DATABASE_HOST=localhost
User=nobody
Group=nogroup
WorkingDirectory=/opt/ilri/dspace-statistics-api

View File

@ -3,7 +3,7 @@ Description=DSpace Statistics Indexer
[Timer]
# twice a day, at 6AM and 6PM
OnCalendar=*-*-* 06:00:00,18:00:00
OnCalendar=*-*-* 06,18:00:00
# Add a random delay of 03600 seconds
RandomizedDelaySec=3600
Persistent=true

View File

@ -1,17 +1,12 @@
from config import SQLITE_DB
import sqlite3
from config import DATABASE_NAME
from config import DATABASE_USER
from config import DATABASE_PASS
from config import DATABASE_HOST
import psycopg2
import psycopg2.extras
def database_connection_rw():
connection = sqlite3.connect(SQLITE_DB)
# allow iterating over row results by column key
connection.row_factory = sqlite3.Row
return connection
def database_connection_ro():
connection = sqlite3.connect('file:{0}?mode=ro'.format(SQLITE_DB), uri=True)
# allow iterating over row results by column key
connection.row_factory = sqlite3.Row
def database_connection():
connection = psycopg2.connect("dbname={} user={} password={} host='{}'".format(DATABASE_NAME, DATABASE_USER, DATABASE_PASS, DATABASE_HOST), cursor_factory=psycopg2.extras.DictCursor)
return connection

View File

@ -20,57 +20,71 @@
# ---
#
# Connects to a DSpace Solr statistics core and ingests item views and downloads
# into a SQLite database for use with other applications (an API, for example).
# into a PostgreSQL database for use by other applications (like an API).
#
# This script is written for Python 3 and requires several modules that you can
# install with pip (I recommend setting up a Python virtual environment first):
# This script is written for Python 3.5+ and requires several modules that you
# can install with pip (I recommend using a Python virtual environment):
#
# $ pip install SolrClient
# $ pip install SolrClient psycopg2-binary
#
# See: https://solrclient.readthedocs.io/en/latest/SolrClient.html
# See: https://wiki.duraspace.org/display/DSPACE/Solr
#
# Tested with Python 3.5 and 3.6.
from database import database_connection_rw
from database import database_connection
import json
from solr import solr_connection
def index_views():
print("Populating database with item views.")
# determine the total number of items with views (aka Solr's numFound)
# get total number of distinct facets for items with a minimum of 1 view,
# otherwise Solr returns all kinds of weird ids that are actually not in
# the database. Also, stats are expensive, but we need stats.calcdistinct
# so we can get the countDistinct summary.
#
# see: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'id',
'stats.calcdistinct':True
}, rows=0)
# divide results into "pages" (numFound / 100)
results_numFound = res.get_num_found()
# get total number of distinct facets (countDistinct)
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['id']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = round(results_numFound / results_per_page)
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
while results_current_page <= results_num_pages:
print('Page {0} of {1}.'.format(results_current_page, results_num_pages))
print('Indexing item views (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
})
}, rows=0)
# check number of facets returned in the last query
#results_currentNumFacets = len(res.get_facets()['id'])
# make sure total number of results > 0
if res.get_num_found() > 0:
# SolrClient's get_facets() returns a dict of dicts
views = res.get_facets()
# in this case iterate over the 'id' dict and get the item ids and views
for item_id, item_views in views['id'].items():
db.execute('''INSERT INTO items(id, views) VALUES(?, ?)
cursor.execute('''INSERT INTO items(id, views) VALUES(%s, %s)
ON CONFLICT(id) DO UPDATE SET downloads=excluded.views''',
(item_id, item_views))
@ -78,42 +92,51 @@ def index_views():
results_current_page += 1
def index_downloads():
print("Populating database with item downloads.")
cursor.close()
# determine the total number of items with downloads (aka Solr's numFound)
def index_downloads():
# get the total number of distinct facets for items with at least 1 download
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'owningItem',
'stats.calcdistinct':True
}, rows=0)
# divide results into "pages" (numFound / 100)
results_numFound = res.get_num_found()
# get total number of distinct facets (countDistinct)
results_totalNumFacets = json.loads(res.get_json())['stats']['stats_fields']['owningItem']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = round(results_numFound / results_per_page)
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
while results_current_page <= results_num_pages:
print('Page {0} of {1}.'.format(results_current_page, results_num_pages))
print('Indexing item downloads (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
})
}, rows=0)
# make sure total number of results > 0
if res.get_num_found() > 0:
# SolrClient's get_facets() returns a dict of dicts
downloads = res.get_facets()
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
for item_id, item_downloads in downloads['owningItem'].items():
db.execute('''INSERT INTO items(id, downloads) VALUES(?, ?)
cursor.execute('''INSERT INTO items(id, downloads) VALUES(%s, %s)
ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads''',
(item_id, item_downloads))
@ -121,11 +144,14 @@ def index_downloads():
results_current_page += 1
db = database_connection_rw()
cursor.close()
db = database_connection()
solr = solr_connection()
# create table to store item views and downloads
db.execute('''CREATE TABLE IF NOT EXISTS items
cursor = db.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS items
(id INT PRIMARY KEY, views INT DEFAULT 0, downloads INT DEFAULT 0)''')
index_views()
index_downloads()

12
requirements.txt Normal file
View File

@ -0,0 +1,12 @@
certifi==2018.8.24
chardet==3.0.4
falcon==1.4.1
gunicorn==19.9.0
idna==2.7
kazoo==2.5.0
psycopg2-binary==2.7.5
python-mimeparse==1.6.0
requests==2.19.1
six==1.11.0
SolrClient==0.2.1
urllib3==1.23