1
0
mirror of https://github.com/ilri/dspace-statistics-api.git synced 2024-11-22 22:35:06 +01:00
dspace-statistics-api/indexer.py

174 lines
6.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python
#
# indexer.py
#
# Copyright 2018 Alan Orth.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ---
#
# Connects to a DSpace Solr statistics core and ingests item views and downloads
# into a PostgreSQL database for use by other applications (like an API).
#
# This script is written for Python 3.5+ and requires several modules that you
# can install with pip (I recommend using a Python virtual environment):
#
# $ pip install SolrClient psycopg2-binary
#
# See: https://solrclient.readthedocs.io/en/latest/SolrClient.html
# See: https://wiki.duraspace.org/display/DSPACE/Solr
from database import database_connection
import ujson
import psycopg2.extras
from solr import solr_connection
def index_views():
# get total number of distinct facets for items with a minimum of 1 view,
# otherwise Solr returns all kinds of weird ids that are actually not in
# the database. Also, stats are expensive, but we need stats.calcdistinct
# so we can get the countDistinct summary.
#
# see: https://lucene.apache.org/solr/guide/6_6/the-stats-component.html
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'id',
'stats.calcdistinct':True
}, rows=0)
# get total number of distinct facets (countDistinct)
results_totalNumFacets = ujson.loads(res.get_json())['stats']['stats_fields']['id']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
print('Indexing item views (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:2',
'fq':'isBot:false AND statistics_type:view',
'facet':True,
'facet.field':'id',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
}, rows=0)
# SolrClient's get_facets() returns a dict of dicts
views = res.get_facets()
# in this case iterate over the 'id' dict and get the item ids and views
for item_id, item_views in views['id'].items():
data.append((item_id, item_views))
# do a batch insert of values from the current "page" of results
sql = 'INSERT INTO items(id, views) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.views'
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
cursor.close()
def index_downloads():
# get the total number of distinct facets for items with at least 1 download
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':1,
'facet.offset':0,
'stats':True,
'stats.field':'owningItem',
'stats.calcdistinct':True
}, rows=0)
# get total number of distinct facets (countDistinct)
results_totalNumFacets = ujson.loads(res.get_json())['stats']['stats_fields']['owningItem']['countDistinct']
# divide results into "pages" (cast to int to effectively round down)
results_per_page = 100
results_num_pages = int(results_totalNumFacets / results_per_page)
results_current_page = 0
cursor = db.cursor()
# create an empty list to store values for batch insertion
data = []
while results_current_page <= results_num_pages:
print('Indexing item downloads (page {} of {})'.format(results_current_page, results_num_pages))
res = solr.query('statistics', {
'q':'type:0',
'fq':'isBot:false AND statistics_type:view AND bundleName:ORIGINAL',
'facet':True,
'facet.field':'owningItem',
'facet.mincount':1,
'facet.limit':results_per_page,
'facet.offset':results_current_page * results_per_page
}, rows=0)
# SolrClient's get_facets() returns a dict of dicts
downloads = res.get_facets()
# in this case iterate over the 'owningItem' dict and get the item ids and downloads
for item_id, item_downloads in downloads['owningItem'].items():
data.append((item_id, item_downloads))
# do a batch insert of values from the current "page" of results
sql = 'INSERT INTO items(id, downloads) VALUES %s ON CONFLICT(id) DO UPDATE SET downloads=excluded.downloads'
psycopg2.extras.execute_values(cursor, sql, data, template='(%s, %s)')
db.commit()
# clear all items from the list so we can populate it with the next batch
data.clear()
results_current_page += 1
cursor.close()
db = database_connection()
solr = solr_connection()
# create table to store item views and downloads
cursor = db.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS items
(id INT PRIMARY KEY, views INT DEFAULT 0, downloads INT DEFAULT 0)''')
index_views()
index_downloads()
db.close()
# vim: set sw=4 ts=4 expandtab: