1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2024-11-29 17:18:19 +01:00
csv-metadata-quality/csv_metadata_quality/app.py
Alan Orth 8435ee242d
Experimental language detection using langid
Works decenty well assuming the title, abstract, and citation fields
are an accurate representation of the language as identified by the
language field. Handles ISO 639-1 (alpha 2) and ISO 639-3 (alpha 3)
values seamlessly.

This includes updated pipenv environment, test data, pytest tests
for both correct and incorrect ISO 639-1 and ISO 639-3 languages,
and a new command line option "-e".
2019-09-26 13:46:32 +03:00

172 lines
5.7 KiB
Python

import argparse
import re
import signal
import sys
import pandas as pd
import csv_metadata_quality.check as check
import csv_metadata_quality.experimental as experimental
import csv_metadata_quality.fix as fix
from csv_metadata_quality.version import VERSION
def parse_args(argv):
parser = argparse.ArgumentParser(description="Metadata quality checker and fixer.")
parser.add_argument(
"--agrovoc-fields",
"-a",
help="Comma-separated list of fields to validate against AGROVOC, for example: dc.subject,cg.coverage.country",
)
parser.add_argument(
"--experimental-checks",
"-e",
help="Enable experimental checks like language detection", action="store_true"
)
parser.add_argument(
"--input-file",
"-i",
help="Path to input file. Can be UTF-8 CSV or Excel XLSX.",
required=True,
type=argparse.FileType("r", encoding="UTF-8"),
)
parser.add_argument(
"--output-file",
"-o",
help="Path to output file (always CSV).",
required=True,
type=argparse.FileType("w", encoding="UTF-8"),
)
parser.add_argument(
"--unsafe-fixes", "-u", help="Perform unsafe fixes.", action="store_true"
)
parser.add_argument(
"--version", "-V", action="version", version=f"CSV Metadata Quality v{VERSION}"
)
parser.add_argument(
"--exclude-fields",
"-x",
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dc.identifier.citation",
)
args = parser.parse_args()
return args
def signal_handler(signal, frame):
sys.exit(1)
def run(argv):
args = parse_args(argv)
# set the signal handler for SIGINT (^C)
signal.signal(signal.SIGINT, signal_handler)
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
df = pd.read_csv(args.input_file, dtype=str)
for column in df.columns:
# Check if the user requested to skip any fields
if args.exclude_fields:
skip = False
# Split the list of excludes on ',' so we can test exact matches
# rather than fuzzy matches with regexes or "if word in string"
for exclude in args.exclude_fields.split(","):
if column == exclude and skip is False:
skip = True
if skip:
print(f"Skipping {column}")
continue
# Fix: whitespace
df[column] = df[column].apply(fix.whitespace)
# Fix: newlines
if args.unsafe_fixes:
df[column] = df[column].apply(fix.newlines)
# Fix: missing space after comma. Only run on author and citation
# fields for now, as this problem is mostly an issue in names.
if args.unsafe_fixes:
match = re.match(r"^.*?(author|citation).*$", column)
if match is not None:
df[column] = df[column].apply(fix.comma_space, field_name=column)
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Check: invalid multi-value separator
df[column] = df[column].apply(check.separators)
# Check: suspicious characters
df[column] = df[column].apply(check.suspicious_characters, field_name=column)
# Fix: invalid multi-value separator
if args.unsafe_fixes:
df[column] = df[column].apply(fix.separators)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace)
# Fix: duplicate metadata values
df[column] = df[column].apply(fix.duplicates)
# Check: invalid AGROVOC subject
if args.agrovoc_fields:
# Identify fields the user wants to validate against AGROVOC
for field in args.agrovoc_fields.split(","):
if column == field:
df[column] = df[column].apply(check.agrovoc, field_name=column)
# Check: invalid language
match = re.match(r"^.*?language.*$", column)
if match is not None:
df[column] = df[column].apply(check.language)
# Check: invalid ISSN
match = re.match(r"^.*?issn.*$", column)
if match is not None:
df[column] = df[column].apply(check.issn)
# Check: invalid ISBN
match = re.match(r"^.*?isbn.*$", column)
if match is not None:
df[column] = df[column].apply(check.isbn)
# Check: invalid date
match = re.match(r"^.*?date.*$", column)
if match is not None:
df[column] = df[column].apply(check.date, field_name=column)
# Check: filename extension
if column == "filename":
df[column] = df[column].apply(check.filename_extension)
##
# Perform some checks on rows so we can consider items as a whole rather
# than simple on a field-by-field basis. This allows us to check whether
# the language used in the title and abstract matches the language indi-
# cated in the language field, for example.
#
# This is slower and apparently frowned upon in the Pandas community be-
# cause it requires iterating over rows rather than using apply over a
# column. For now it will have to do.
##
if args.experimental_checks:
# Transpose the DataFrame so we can consider each row as a column
df_transposed = df.T
for column in df_transposed.columns:
experimental.correct_language(df_transposed[column])
# Write
df.to_csv(args.output_file, index=False)
# Close the input and output files before exiting
args.input_file.close()
args.output_file.close()
sys.exit(0)