mirror of
https://github.com/ilri/csv-metadata-quality.git
synced 2025-01-06 19:04:53 +01:00
Alan Orth
040e56fc76
When a user explicitly requests that a field be excluded with -x we skip that field in most checks. Up until now that did not include the item-based checks using a transposed dataframe because we don't know the metadata field names (labels) until we iterate over them. Now the excludes are respected for item-based checks.
155 lines
3.5 KiB
Python
155 lines
3.5 KiB
Python
# SPDX-License-Identifier: GPL-3.0-only
|
||
|
||
import pandas as pd
|
||
|
||
import csv_metadata_quality.fix as fix
|
||
|
||
|
||
def test_fix_leading_whitespace():
|
||
"""Test fixing leading whitespace."""
|
||
|
||
value = " Alan"
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.whitespace(value, field_name) == "Alan"
|
||
|
||
|
||
def test_fix_trailing_whitespace():
|
||
"""Test fixing trailing whitespace."""
|
||
|
||
value = "Alan "
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.whitespace(value, field_name) == "Alan"
|
||
|
||
|
||
def test_fix_excessive_whitespace():
|
||
"""Test fixing excessive whitespace."""
|
||
|
||
value = "Alan Orth"
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.whitespace(value, field_name) == "Alan Orth"
|
||
|
||
|
||
def test_fix_invalid_separators():
|
||
"""Test fixing invalid multi-value separators."""
|
||
|
||
value = "Alan|Orth"
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.separators(value, field_name) == "Alan||Orth"
|
||
|
||
|
||
def test_fix_unnecessary_separators():
|
||
"""Test fixing unnecessary multi-value separators."""
|
||
|
||
field = "Alan||Orth||"
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.separators(field, field_name) == "Alan||Orth"
|
||
|
||
|
||
def test_fix_unnecessary_unicode():
|
||
"""Test fixing unnecessary Unicode."""
|
||
|
||
value = "Alan Orth"
|
||
|
||
assert fix.unnecessary_unicode(value) == "Alan Orth"
|
||
|
||
|
||
def test_fix_duplicates():
|
||
"""Test fixing duplicate metadata values."""
|
||
|
||
value = "Kenya||Kenya"
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.duplicates(value, field_name) == "Kenya"
|
||
|
||
|
||
def test_fix_newlines():
|
||
"""Test fixing newlines."""
|
||
|
||
value = """Ken
|
||
ya"""
|
||
field_name = "dcterms.subject"
|
||
|
||
assert fix.newlines(value, field_name) == "Kenya"
|
||
|
||
|
||
def test_fix_comma_space():
|
||
"""Test adding space after comma."""
|
||
|
||
value = "Orth,Alan S."
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.comma_space(value, field_name) == "Orth, Alan S."
|
||
|
||
|
||
def test_fix_normalized_unicode():
|
||
"""Test fixing a string that is already in its normalized (NFC) Unicode form."""
|
||
|
||
# string using the normalized canonical form of é
|
||
value = "Ouédraogo, Mathieu"
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.normalize_unicode(value, field_name) == "Ouédraogo, Mathieu"
|
||
|
||
|
||
def test_fix_decomposed_unicode():
|
||
"""Test fixing a string that contains Unicode string."""
|
||
|
||
# string using the decomposed form of é
|
||
value = "Ouédraogo, Mathieu"
|
||
|
||
field_name = "dc.contributor.author"
|
||
|
||
assert fix.normalize_unicode(value, field_name) == "Ouédraogo, Mathieu"
|
||
|
||
|
||
def test_fix_mojibake():
|
||
"""Test string with no mojibake."""
|
||
|
||
field = "CIAT Publicaçao"
|
||
field_name = "dcterms.isPartOf"
|
||
|
||
assert fix.mojibake(field, field_name) == "CIAT Publicaçao"
|
||
|
||
|
||
def test_fix_country_not_matching_region():
|
||
"""Test an item with regions not matching its country list."""
|
||
|
||
title = "Testing an item with no matching region."
|
||
country = "Kenya"
|
||
region = ""
|
||
missing_region = "Eastern Africa"
|
||
exclude = list()
|
||
|
||
# Emulate a column in a transposed dataframe (which is just a series)
|
||
d = {
|
||
"dc.title": title,
|
||
"cg.coverage.country": country,
|
||
"cg.coverage.region": region,
|
||
}
|
||
series = pd.Series(data=d)
|
||
|
||
result = fix.countries_match_regions(series, exclude)
|
||
|
||
# Emulate the correct series we are expecting
|
||
d_correct = {
|
||
"dc.title": title,
|
||
"cg.coverage.country": country,
|
||
"cg.coverage.region": missing_region,
|
||
}
|
||
series_correct = pd.Series(data=d_correct)
|
||
|
||
pd.testing.assert_series_equal(result, series_correct)
|