mirror of
https://github.com/ilri/csv-metadata-quality.git
synced 2025-01-26 04:03:23 +01:00
Alan Orth
bd8943f36a
All checks were successful
continuous-integration/drone/push Build is passing
We don't need to crash if someone feeds us a CSV file that is miss- ing commont DSpace fields like title, type, and subject.
204 lines
6.7 KiB
Python
204 lines
6.7 KiB
Python
# SPDX-License-Identifier: GPL-3.0-only
|
|
|
|
import argparse
|
|
import re
|
|
import signal
|
|
import sys
|
|
|
|
import pandas as pd
|
|
from colorama import Fore
|
|
|
|
import csv_metadata_quality.check as check
|
|
import csv_metadata_quality.experimental as experimental
|
|
import csv_metadata_quality.fix as fix
|
|
from csv_metadata_quality.version import VERSION
|
|
|
|
|
|
def parse_args(argv):
|
|
parser = argparse.ArgumentParser(description="Metadata quality checker and fixer.")
|
|
parser.add_argument(
|
|
"--agrovoc-fields",
|
|
"-a",
|
|
help="Comma-separated list of fields to validate against AGROVOC, for example: dcterms.subject,cg.coverage.country",
|
|
)
|
|
parser.add_argument(
|
|
"--experimental-checks",
|
|
"-e",
|
|
help="Enable experimental checks like language detection",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--input-file",
|
|
"-i",
|
|
help="Path to input file. Can be UTF-8 CSV or Excel XLSX.",
|
|
required=True,
|
|
type=argparse.FileType("r", encoding="UTF-8"),
|
|
)
|
|
parser.add_argument(
|
|
"--output-file",
|
|
"-o",
|
|
help="Path to output file (always CSV).",
|
|
required=True,
|
|
type=argparse.FileType("w", encoding="UTF-8"),
|
|
)
|
|
parser.add_argument(
|
|
"--unsafe-fixes", "-u", help="Perform unsafe fixes.", action="store_true"
|
|
)
|
|
parser.add_argument(
|
|
"--version", "-V", action="version", version=f"CSV Metadata Quality v{VERSION}"
|
|
)
|
|
parser.add_argument(
|
|
"--exclude-fields",
|
|
"-x",
|
|
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dcterms.bibliographicCitation",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def signal_handler(signal, frame):
|
|
sys.exit(1)
|
|
|
|
|
|
def run(argv):
|
|
args = parse_args(argv)
|
|
|
|
# set the signal handler for SIGINT (^C)
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
|
|
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
|
|
df = pd.read_csv(args.input_file, dtype=str)
|
|
|
|
for column in df.columns:
|
|
# Check if the user requested to skip any fields
|
|
if args.exclude_fields:
|
|
skip = False
|
|
# Split the list of excludes on ',' so we can test exact matches
|
|
# rather than fuzzy matches with regexes or "if word in string"
|
|
for exclude in args.exclude_fields.split(","):
|
|
if column == exclude and skip is False:
|
|
skip = True
|
|
if skip:
|
|
print(f"{Fore.YELLOW}Skipping {Fore.RESET}{column}")
|
|
|
|
continue
|
|
|
|
# Fix: whitespace
|
|
df[column] = df[column].apply(fix.whitespace, field_name=column)
|
|
|
|
# Fix: newlines
|
|
if args.unsafe_fixes:
|
|
df[column] = df[column].apply(fix.newlines)
|
|
|
|
# Fix: missing space after comma. Only run on author and citation
|
|
# fields for now, as this problem is mostly an issue in names.
|
|
if args.unsafe_fixes:
|
|
match = re.match(r"^.*?(author|citation).*$", column)
|
|
if match is not None:
|
|
df[column] = df[column].apply(fix.comma_space, field_name=column)
|
|
|
|
# Fix: perform Unicode normalization (NFC) to convert decomposed
|
|
# characters into their canonical forms.
|
|
if args.unsafe_fixes:
|
|
df[column] = df[column].apply(fix.normalize_unicode, field_name=column)
|
|
|
|
# Fix: unnecessary Unicode
|
|
df[column] = df[column].apply(fix.unnecessary_unicode)
|
|
|
|
# Check: suspicious characters
|
|
df[column].apply(check.suspicious_characters, field_name=column)
|
|
|
|
# Check: mojibake
|
|
df[column].apply(check.mojibake, field_name=column)
|
|
|
|
# Fix: mojibake
|
|
if args.unsafe_fixes:
|
|
df[column] = df[column].apply(fix.mojibake, field_name=column)
|
|
|
|
# Fix: invalid and unnecessary multi-value separators
|
|
df[column] = df[column].apply(fix.separators, field_name=column)
|
|
# Run whitespace fix again after fixing invalid separators
|
|
df[column] = df[column].apply(fix.whitespace, field_name=column)
|
|
|
|
# Fix: duplicate metadata values
|
|
df[column] = df[column].apply(fix.duplicates, field_name=column)
|
|
|
|
# Check: invalid AGROVOC subject
|
|
if args.agrovoc_fields:
|
|
# Identify fields the user wants to validate against AGROVOC
|
|
for field in args.agrovoc_fields.split(","):
|
|
if column == field:
|
|
df[column].apply(check.agrovoc, field_name=column)
|
|
|
|
# Check: invalid language
|
|
match = re.match(r"^.*?language.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.language)
|
|
|
|
# Check: invalid ISSN
|
|
match = re.match(r"^.*?issn.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.issn)
|
|
|
|
# Check: invalid ISBN
|
|
match = re.match(r"^.*?isbn.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.isbn)
|
|
|
|
# Check: invalid date
|
|
match = re.match(r"^.*?(date|dcterms\.issued).*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.date, field_name=column)
|
|
|
|
# Check: filename extension
|
|
if column == "filename":
|
|
df[column].apply(check.filename_extension)
|
|
|
|
# Check: SPDX license identifier
|
|
match = re.match(r"dcterms\.license.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.spdx_license_identifier)
|
|
|
|
### End individual column checks ###
|
|
|
|
# Check: duplicate items
|
|
# We extract just the title, type, and date issued columns to analyze
|
|
try:
|
|
duplicates_df = df.filter(
|
|
regex=r"dcterms\.title|dc\.title|dcterms\.type|dc\.type|dcterms\.issued|dc\.date\.issued"
|
|
)
|
|
check.duplicate_items(duplicates_df)
|
|
|
|
# Delete the temporary duplicates DataFrame
|
|
del duplicates_df
|
|
except IndexError:
|
|
pass
|
|
|
|
##
|
|
# Perform some checks on rows so we can consider items as a whole rather
|
|
# than simple on a field-by-field basis. This allows us to check whether
|
|
# the language used in the title and abstract matches the language indi-
|
|
# cated in the language field, for example.
|
|
#
|
|
# This is slower and apparently frowned upon in the Pandas community be-
|
|
# cause it requires iterating over rows rather than using apply over a
|
|
# column. For now it will have to do.
|
|
##
|
|
|
|
if args.experimental_checks:
|
|
# Transpose the DataFrame so we can consider each row as a column
|
|
df_transposed = df.T
|
|
|
|
for column in df_transposed.columns:
|
|
experimental.correct_language(df_transposed[column])
|
|
|
|
# Write
|
|
df.to_csv(args.output_file, index=False)
|
|
|
|
# Close the input and output files before exiting
|
|
args.input_file.close()
|
|
args.output_file.close()
|
|
|
|
sys.exit(0)
|