1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2024-11-16 19:17:03 +01:00
csv-metadata-quality/csv_metadata_quality/app.py
Alan Orth 1f637f32cd
Rework requests-cache
We should only be running this once per invocation, not for every
row we check. This should be more efficient, but it means that we
don't cache responses when running via pytest, which is actually
probably a good thing.
2023-10-15 23:37:38 +03:00

257 lines
9.0 KiB
Python

# SPDX-License-Identifier: GPL-3.0-only
import argparse
import os
import re
import signal
import sys
from datetime import timedelta
import pandas as pd
import requests_cache
from colorama import Fore
import csv_metadata_quality.check as check
import csv_metadata_quality.experimental as experimental
import csv_metadata_quality.fix as fix
from csv_metadata_quality.version import VERSION
def parse_args(argv):
parser = argparse.ArgumentParser(description="Metadata quality checker and fixer.")
parser.add_argument(
"--agrovoc-fields",
"-a",
help="Comma-separated list of fields to validate against AGROVOC, for example: dcterms.subject,cg.coverage.country",
)
parser.add_argument(
"--drop-invalid-agrovoc",
"-d",
help="After validating metadata values against AGROVOC, drop invalid values.",
action="store_true",
)
parser.add_argument(
"--experimental-checks",
"-e",
help="Enable experimental checks like language detection",
action="store_true",
)
parser.add_argument(
"--input-file",
"-i",
help="Path to input file. Must be a UTF-8 CSV.",
required=True,
type=argparse.FileType("r", encoding="UTF-8"),
)
parser.add_argument(
"--output-file",
"-o",
help="Path to output file (always CSV).",
required=True,
type=argparse.FileType("w", encoding="UTF-8"),
)
parser.add_argument(
"--unsafe-fixes", "-u", help="Perform unsafe fixes.", action="store_true"
)
parser.add_argument(
"--version", "-V", action="version", version=f"CSV Metadata Quality v{VERSION}"
)
parser.add_argument(
"--exclude-fields",
"-x",
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dcterms.bibliographicCitation",
)
args = parser.parse_args()
return args
def signal_handler(signal, frame):
sys.exit(1)
def run(argv):
args = parse_args(argv)
# set the signal handler for SIGINT (^C)
signal.signal(signal.SIGINT, signal_handler)
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
df = pd.read_csv(args.input_file, dtype_backend="pyarrow", dtype="str")
# Check if the user requested to skip any fields
if args.exclude_fields:
# Split the list of excluded fields on ',' into a list. Note that the
# user should be careful to no include spaces here.
exclude = args.exclude_fields.split(",")
else:
exclude = list()
# enable transparent request cache with thirty days expiry
expire_after = timedelta(days=30)
# Allow overriding the location of the requests cache, just in case we are
# running in an environment where we can't write to the current working di-
# rectory (for example from csv-metadata-quality-web).
REQUESTS_CACHE_DIR = os.environ.get("REQUESTS_CACHE_DIR", ".")
requests_cache.install_cache(
f"{REQUESTS_CACHE_DIR}/agrovoc-response-cache", expire_after=expire_after
)
# prune old cache entries
requests_cache.delete()
for column in df.columns:
if column in exclude:
print(f"{Fore.YELLOW}Skipping {Fore.RESET}{column}")
continue
if args.unsafe_fixes:
# Skip whitespace and newline fixes on abstracts and descriptions
# because there are too many with legitimate multi-line metadata.
match = re.match(r"^.*?(abstract|description).*$", column)
if match is None:
# Fix: whitespace
df[column] = df[column].apply(fix.whitespace, field_name=column)
# Fix: newlines
df[column] = df[column].apply(fix.newlines, field_name=column)
# Fix: missing space after comma. Only run on author and citation
# fields for now, as this problem is mostly an issue in names.
if args.unsafe_fixes:
match = re.match(r"^.*?(author|[Cc]itation).*$", column)
if match is not None:
df[column] = df[column].apply(fix.comma_space, field_name=column)
# Fix: perform Unicode normalization (NFC) to convert decomposed
# characters into their canonical forms.
if args.unsafe_fixes:
df[column] = df[column].apply(fix.normalize_unicode, field_name=column)
# Check: suspicious characters
df[column].apply(check.suspicious_characters, field_name=column)
# Fix: mojibake. If unsafe fixes are not enabled then we only check.
if args.unsafe_fixes:
df[column] = df[column].apply(fix.mojibake, field_name=column)
else:
df[column].apply(check.mojibake, field_name=column)
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Fix: invalid and unnecessary multi-value separators. Skip the title
# and abstract fields because "|" is used to indicate something like
# a subtitle.
match = re.match(r"^.*?(abstract|[Cc]itation|title).*$", column)
if match is None:
df[column] = df[column].apply(fix.separators, field_name=column)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace, field_name=column)
# Fix: duplicate metadata values
df[column] = df[column].apply(fix.duplicates, field_name=column)
# Check: invalid AGROVOC subject and optionally drop them
if args.agrovoc_fields:
# Identify fields the user wants to validate against AGROVOC
for field in args.agrovoc_fields.split(","):
if column == field:
df[column] = df[column].apply(
check.agrovoc, field_name=column, drop=args.drop_invalid_agrovoc
)
# Check: invalid language
match = re.match(r"^.*?language.*$", column)
if match is not None:
df[column].apply(check.language)
# Check: invalid ISSN
match = re.match(r"^.*?issn.*$", column)
if match is not None:
df[column].apply(check.issn)
# Check: invalid ISBN
match = re.match(r"^.*?isbn.*$", column)
if match is not None:
df[column].apply(check.isbn)
# Check: invalid date
match = re.match(r"^.*?(date|dcterms\.issued).*$", column)
if match is not None:
df[column].apply(check.date, field_name=column)
# Check: filename extension
if column == "filename":
df[column].apply(check.filename_extension)
# Check: SPDX license identifier
match = re.match(r"dcterms\.license.*$", column)
if match is not None:
df[column].apply(check.spdx_license_identifier)
### End individual column checks ###
# Check: duplicate items
# We extract just the title, type, and date issued columns to analyze
try:
duplicates_df = df.filter(
regex=r"dcterms\.title|dc\.title|dcterms\.type|dc\.type|dcterms\.issued|dc\.date\.issued"
)
check.duplicate_items(duplicates_df)
# Delete the temporary duplicates DataFrame
del duplicates_df
except IndexError:
pass
##
# Perform some checks on rows so we can consider items as a whole rather
# than simple on a field-by-field basis. This allows us to check whether
# the language used in the title and abstract matches the language indi-
# cated in the language field, for example.
#
# This is slower and apparently frowned upon in the Pandas community be-
# cause it requires iterating over rows rather than using apply over a
# column. For now it will have to do.
##
# Transpose the DataFrame so we can consider each row as a column
df_transposed = df.T
# Remember, here a "column" is an item (previously row). Perhaps I
# should rename column in this for loop...
for column in df_transposed.columns:
# Check: citation DOI
check.citation_doi(df_transposed[column], exclude)
# Check: title in citation
check.title_in_citation(df_transposed[column], exclude)
if args.unsafe_fixes:
# Fix: countries match regions
df_transposed[column] = fix.countries_match_regions(
df_transposed[column], exclude
)
else:
# Check: countries match regions
check.countries_match_regions(df_transposed[column], exclude)
if args.experimental_checks:
experimental.correct_language(df_transposed[column], exclude)
# Transpose the DataFrame back before writing. This is probably wasteful to
# do every time since we technically only need to do it if we've done the
# countries/regions fix above, but I can't think of another way for now.
df_transposed_back = df_transposed.T
# Write
df_transposed_back.to_csv(args.output_file, index=False)
# Close the input and output files before exiting
args.input_file.close()
args.output_file.close()
sys.exit(0)