mirror of
https://github.com/ilri/csv-metadata-quality.git
synced 2024-11-04 21:43:00 +01:00
Alan Orth
d21d2621e3
I suspect this undermines the PyArrow backend performance gains in recent Pandas 2.0.0, but we are dealing with messy data sometimes and we must rely on data being strings.
241 lines
8.4 KiB
Python
241 lines
8.4 KiB
Python
# SPDX-License-Identifier: GPL-3.0-only
|
|
|
|
import argparse
|
|
import re
|
|
import signal
|
|
import sys
|
|
|
|
import pandas as pd
|
|
from colorama import Fore
|
|
|
|
import csv_metadata_quality.check as check
|
|
import csv_metadata_quality.experimental as experimental
|
|
import csv_metadata_quality.fix as fix
|
|
from csv_metadata_quality.version import VERSION
|
|
|
|
|
|
def parse_args(argv):
|
|
parser = argparse.ArgumentParser(description="Metadata quality checker and fixer.")
|
|
parser.add_argument(
|
|
"--agrovoc-fields",
|
|
"-a",
|
|
help="Comma-separated list of fields to validate against AGROVOC, for example: dcterms.subject,cg.coverage.country",
|
|
)
|
|
parser.add_argument(
|
|
"--drop-invalid-agrovoc",
|
|
"-d",
|
|
help="After validating metadata values against AGROVOC, drop invalid values.",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--experimental-checks",
|
|
"-e",
|
|
help="Enable experimental checks like language detection",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--input-file",
|
|
"-i",
|
|
help="Path to input file. Must be a UTF-8 CSV.",
|
|
required=True,
|
|
type=argparse.FileType("r", encoding="UTF-8"),
|
|
)
|
|
parser.add_argument(
|
|
"--output-file",
|
|
"-o",
|
|
help="Path to output file (always CSV).",
|
|
required=True,
|
|
type=argparse.FileType("w", encoding="UTF-8"),
|
|
)
|
|
parser.add_argument(
|
|
"--unsafe-fixes", "-u", help="Perform unsafe fixes.", action="store_true"
|
|
)
|
|
parser.add_argument(
|
|
"--version", "-V", action="version", version=f"CSV Metadata Quality v{VERSION}"
|
|
)
|
|
parser.add_argument(
|
|
"--exclude-fields",
|
|
"-x",
|
|
help="Comma-separated list of fields to skip, for example: dc.contributor.author,dcterms.bibliographicCitation",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def signal_handler(signal, frame):
|
|
sys.exit(1)
|
|
|
|
|
|
def run(argv):
|
|
args = parse_args(argv)
|
|
|
|
# set the signal handler for SIGINT (^C)
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
|
|
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
|
|
df = pd.read_csv(args.input_file, dtype_backend="pyarrow", dtype="str")
|
|
|
|
# Check if the user requested to skip any fields
|
|
if args.exclude_fields:
|
|
# Split the list of excluded fields on ',' into a list. Note that the
|
|
# user should be careful to no include spaces here.
|
|
exclude = args.exclude_fields.split(",")
|
|
else:
|
|
exclude = list()
|
|
|
|
for column in df.columns:
|
|
if column in exclude:
|
|
print(f"{Fore.YELLOW}Skipping {Fore.RESET}{column}")
|
|
|
|
continue
|
|
|
|
if args.unsafe_fixes:
|
|
# Skip whitespace and newline fixes on abstracts and descriptions
|
|
# because there are too many with legitimate multi-line metadata.
|
|
match = re.match(r"^.*?(abstract|description).*$", column)
|
|
if match is None:
|
|
# Fix: whitespace
|
|
df[column] = df[column].apply(fix.whitespace, field_name=column)
|
|
|
|
# Fix: newlines
|
|
df[column] = df[column].apply(fix.newlines, field_name=column)
|
|
|
|
# Fix: missing space after comma. Only run on author and citation
|
|
# fields for now, as this problem is mostly an issue in names.
|
|
if args.unsafe_fixes:
|
|
match = re.match(r"^.*?(author|[Cc]itation).*$", column)
|
|
if match is not None:
|
|
df[column] = df[column].apply(fix.comma_space, field_name=column)
|
|
|
|
# Fix: perform Unicode normalization (NFC) to convert decomposed
|
|
# characters into their canonical forms.
|
|
if args.unsafe_fixes:
|
|
df[column] = df[column].apply(fix.normalize_unicode, field_name=column)
|
|
|
|
# Check: suspicious characters
|
|
df[column].apply(check.suspicious_characters, field_name=column)
|
|
|
|
# Fix: mojibake. If unsafe fixes are not enabled then we only check.
|
|
if args.unsafe_fixes:
|
|
df[column] = df[column].apply(fix.mojibake, field_name=column)
|
|
else:
|
|
df[column].apply(check.mojibake, field_name=column)
|
|
|
|
# Fix: unnecessary Unicode
|
|
df[column] = df[column].apply(fix.unnecessary_unicode)
|
|
|
|
# Fix: invalid and unnecessary multi-value separators. Skip the title
|
|
# and abstract fields because "|" is used to indicate something like
|
|
# a subtitle.
|
|
match = re.match(r"^.*?(abstract|[Cc]itation|title).*$", column)
|
|
if match is None:
|
|
df[column] = df[column].apply(fix.separators, field_name=column)
|
|
# Run whitespace fix again after fixing invalid separators
|
|
df[column] = df[column].apply(fix.whitespace, field_name=column)
|
|
|
|
# Fix: duplicate metadata values
|
|
df[column] = df[column].apply(fix.duplicates, field_name=column)
|
|
|
|
# Check: invalid AGROVOC subject and optionally drop them
|
|
if args.agrovoc_fields:
|
|
# Identify fields the user wants to validate against AGROVOC
|
|
for field in args.agrovoc_fields.split(","):
|
|
if column == field:
|
|
df[column] = df[column].apply(
|
|
check.agrovoc, field_name=column, drop=args.drop_invalid_agrovoc
|
|
)
|
|
|
|
# Check: invalid language
|
|
match = re.match(r"^.*?language.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.language)
|
|
|
|
# Check: invalid ISSN
|
|
match = re.match(r"^.*?issn.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.issn)
|
|
|
|
# Check: invalid ISBN
|
|
match = re.match(r"^.*?isbn.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.isbn)
|
|
|
|
# Check: invalid date
|
|
match = re.match(r"^.*?(date|dcterms\.issued).*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.date, field_name=column)
|
|
|
|
# Check: filename extension
|
|
if column == "filename":
|
|
df[column].apply(check.filename_extension)
|
|
|
|
# Check: SPDX license identifier
|
|
match = re.match(r"dcterms\.license.*$", column)
|
|
if match is not None:
|
|
df[column].apply(check.spdx_license_identifier)
|
|
|
|
### End individual column checks ###
|
|
|
|
# Check: duplicate items
|
|
# We extract just the title, type, and date issued columns to analyze
|
|
try:
|
|
duplicates_df = df.filter(
|
|
regex=r"dcterms\.title|dc\.title|dcterms\.type|dc\.type|dcterms\.issued|dc\.date\.issued"
|
|
)
|
|
check.duplicate_items(duplicates_df)
|
|
|
|
# Delete the temporary duplicates DataFrame
|
|
del duplicates_df
|
|
except IndexError:
|
|
pass
|
|
|
|
##
|
|
# Perform some checks on rows so we can consider items as a whole rather
|
|
# than simple on a field-by-field basis. This allows us to check whether
|
|
# the language used in the title and abstract matches the language indi-
|
|
# cated in the language field, for example.
|
|
#
|
|
# This is slower and apparently frowned upon in the Pandas community be-
|
|
# cause it requires iterating over rows rather than using apply over a
|
|
# column. For now it will have to do.
|
|
##
|
|
|
|
# Transpose the DataFrame so we can consider each row as a column
|
|
df_transposed = df.T
|
|
|
|
# Remember, here a "column" is an item (previously row). Perhaps I
|
|
# should rename column in this for loop...
|
|
for column in df_transposed.columns:
|
|
# Check: citation DOI
|
|
check.citation_doi(df_transposed[column], exclude)
|
|
|
|
# Check: title in citation
|
|
check.title_in_citation(df_transposed[column], exclude)
|
|
|
|
if args.unsafe_fixes:
|
|
# Fix: countries match regions
|
|
df_transposed[column] = fix.countries_match_regions(
|
|
df_transposed[column], exclude
|
|
)
|
|
else:
|
|
# Check: countries match regions
|
|
check.countries_match_regions(df_transposed[column], exclude)
|
|
|
|
if args.experimental_checks:
|
|
experimental.correct_language(df_transposed[column], exclude)
|
|
|
|
# Transpose the DataFrame back before writing. This is probably wasteful to
|
|
# do every time since we technically only need to do it if we've done the
|
|
# countries/regions fix above, but I can't think of another way for now.
|
|
df_transposed_back = df_transposed.T
|
|
|
|
# Write
|
|
df_transposed_back.to_csv(args.output_file, index=False)
|
|
|
|
# Close the input and output files before exiting
|
|
args.input_file.close()
|
|
args.output_file.close()
|
|
|
|
sys.exit(0)
|