1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2024-11-16 02:57:04 +01:00
csv-metadata-quality/csv_metadata_quality/fix.py
Alan Orth 95015febbd
All checks were successful
continuous-integration/drone/push Build is passing
csv_metadata_quality/fix.py: fix thin spaces
Replace thin spaces with normal spaces. Sometimes I see these get
mis handled on Windows machines and they end up as "?" or so.
2021-12-09 23:22:53 +02:00

289 lines
7.8 KiB
Python
Executable File

# SPDX-License-Identifier: GPL-3.0-only
import re
from unicodedata import normalize
import pandas as pd
from colorama import Fore
from ftfy import fix_text
from csv_metadata_quality.util import is_mojibake, is_nfc
def whitespace(field, field_name):
"""Fix whitespace issues.
Return string with leading, trailing, and consecutive whitespace trimmed.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Initialize an empty list to hold the cleaned values
values = list()
# Try to split multi-value field on "||" separator
for value in field.split("||"):
# Strip leading and trailing whitespace
value = value.strip()
# Replace excessive whitespace (>2) with one space
pattern = re.compile(r"\s{2,}")
match = re.findall(pattern, value)
if match:
print(
f"{Fore.GREEN}Removing excessive whitespace ({field_name}): {Fore.RESET}{value}"
)
value = re.sub(pattern, " ", value)
# Save cleaned value
values.append(value)
# Create a new field consisting of all values joined with "||"
new_field = "||".join(values)
return new_field
def separators(field, field_name):
"""Fix for invalid and unnecessary multi-value separators, for example:
value|value
value|||value
value||value||
Prints the field with the invalid multi-value separator.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Initialize an empty list to hold the cleaned values
values = list()
# Try to split multi-value field on "||" separator
for value in field.split("||"):
# Check if the value is blank and skip it
if value == "":
print(
f"{Fore.GREEN}Fixing unnecessary multi-value separator ({field_name}): {Fore.RESET}{field}"
)
continue
# After splitting, see if there are any remaining "|" characters
pattern = re.compile(r"\|")
match = re.findall(pattern, value)
if match:
print(
f"{Fore.GREEN}Fixing invalid multi-value separator ({field_name}): {Fore.RESET}{value}"
)
value = re.sub(pattern, "||", value)
# Save cleaned value
values.append(value)
# Create a new field consisting of all values joined with "||"
new_field = "||".join(values)
return new_field
def unnecessary_unicode(field):
"""Remove and replace unnecessary Unicode characters.
Removes unnecessary Unicode characters like:
- Zero-width space (U+200B)
- Replacement character (U+FFFD)
Replaces unnecessary Unicode characters like:
- Soft hyphen (U+00AD) → hyphen
- No-break space (U+00A0) → space
- Thin space (U+2009) → space
Return string with characters removed or replaced.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Check for zero-width space characters (U+200B)
pattern = re.compile(r"\u200B")
match = re.findall(pattern, field)
if match:
print(f"{Fore.GREEN}Removing unnecessary Unicode (U+200B): {Fore.RESET}{field}")
field = re.sub(pattern, "", field)
# Check for replacement characters (U+FFFD)
pattern = re.compile(r"\uFFFD")
match = re.findall(pattern, field)
if match:
print(f"{Fore.GREEN}Removing unnecessary Unicode (U+FFFD): {Fore.RESET}{field}")
field = re.sub(pattern, "", field)
# Check for no-break spaces (U+00A0)
pattern = re.compile(r"\u00A0")
match = re.findall(pattern, field)
if match:
print(
f"{Fore.GREEN}Replacing unnecessary Unicode (U+00A0): {Fore.RESET}{field}"
)
field = re.sub(pattern, " ", field)
# Check for soft hyphens (U+00AD), sometimes preceeded with a normal hyphen
pattern = re.compile(r"\u002D*?\u00AD")
match = re.findall(pattern, field)
if match:
print(
f"{Fore.GREEN}Replacing unnecessary Unicode (U+00AD): {Fore.RESET}{field}"
)
field = re.sub(pattern, "-", field)
# Check for thin spaces (U+2009)
pattern = re.compile(r"\u2009")
match = re.findall(pattern, field)
if match:
print(
f"{Fore.GREEN}Replacing unnecessary Unicode (U+2009): {Fore.RESET}{field}"
)
field = re.sub(pattern, " ", field)
return field
def duplicates(field, field_name):
"""Remove duplicate metadata values."""
# Skip fields with missing values
if pd.isna(field):
return
# Try to split multi-value field on "||" separator
values = field.split("||")
# Initialize an empty list to hold the de-duplicated values
new_values = list()
# Iterate over all values
for value in values:
# Check if each value exists in our list of values already
if value not in new_values:
new_values.append(value)
else:
print(
f"{Fore.GREEN}Removing duplicate value ({field_name}): {Fore.RESET}{value}"
)
# Create a new field consisting of all values joined with "||"
new_field = "||".join(new_values)
return new_field
def newlines(field, field_name):
"""Fix newlines.
Single metadata values should not span multiple lines because this is not
rendered properly in DSpace's XMLUI and even causes issues during import.
Implementation note: this currently only detects Unix line feeds (0x0a).
This is essentially when a user presses "Enter" to move to the next line.
Other newlines like the Windows carriage return are already handled with
the string stipping performed in the whitespace fixes.
Confusingly, in Vim '\n' matches a line feed when searching, but you must
use '\r' to *insert* a line feed, ie in a search and replace expression.
Return string with newlines removed.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Check for Unix line feed (LF)
match = re.findall(r"\n", field)
if match:
print(f"{Fore.GREEN}Removing newline ({field_name}): {Fore.RESET}{field}")
field = field.replace("\n", "")
return field
def comma_space(field, field_name):
"""Fix occurrences of commas missing a trailing space, for example:
Orth,Alan S.
This is a very common mistake in author and citation fields.
Return string with a space added.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Check for comma followed by a word character
match = re.findall(r",\w", field)
if match:
print(
f"{Fore.GREEN}Adding space after comma ({field_name}): {Fore.RESET}{field}"
)
field = re.sub(r",(\w)", r", \1", field)
return field
def normalize_unicode(field, field_name):
"""Fix occurrences of decomposed Unicode characters by normalizing them
with NFC to their canonical forms, for example:
Ouédraogo, Mathieu → Ouédraogo, Mathieu
Return normalized string.
"""
# Skip fields with missing values
if pd.isna(field):
return
# Check if the current string is using normalized Unicode (NFC)
if not is_nfc(field):
print(f"{Fore.GREEN}Normalizing Unicode ({field_name}): {Fore.RESET}{field}")
field = normalize("NFC", field)
return field
def mojibake(field, field_name):
"""Attempts to fix mojibake (text that was encoded in one encoding and deco-
ded in another, perhaps multiple times). See util.py.
Return fixed string.
"""
# Skip fields with missing values
if pd.isna(field):
return field
if is_mojibake(field):
print(f"{Fore.GREEN}Fixing encoding issue ({field_name}): {Fore.RESET}{field}")
return fix_text(field)
else:
return field