1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2024-11-16 02:57:04 +01:00
csv-metadata-quality/csv_metadata_quality/app.py
Alan Orth 9100efdf50
Re-work as a proper standalone Python package
Add a setup.py so that installation is easier and a standalone CLI
script called csv-metadata-quality is provided. Now the user only
needs to run this from a virtual environment inside the project
directory:

    $ pip install .

Eventually I could publish this on PyPi when I settle on a more
appropriate package name.

See: https://packaging.python.org/tutorials/packaging-projects/
See: https://chriswarrick.com/blog/2014/09/15/python-apps-the-right-way-entry_points-and-scripts/
2019-07-31 17:34:36 +03:00

77 lines
2.6 KiB
Python

import argparse
import csv_metadata_quality.check as check
import csv_metadata_quality.fix as fix
import pandas as pd
import re
def parse_args(argv):
parser = argparse.ArgumentParser(description='Metadata quality checker and fixer.')
parser.add_argument('--input-file', '-i', help='Path to input file. Can be UTF-8 CSV or Excel XLSX.', required=True, type=argparse.FileType('r', encoding='UTF-8'))
parser.add_argument('--output-file', '-o', help='Path to output file (always CSV).', required=True, type=argparse.FileType('w', encoding='UTF-8'))
parser.add_argument('--unsafe-fixes', '-u', help='Perform unsafe fixes.', action='store_true')
args = parser.parse_args()
return args
def run(argv):
args = parse_args(argv)
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
df = pd.read_csv(args.input_file, dtype=str)
for column in df.columns.values.tolist():
# Fix: whitespace
df[column] = df[column].apply(fix.whitespace)
# Fix: newlines
if args.unsafe_fixes:
df[column] = df[column].apply(fix.newlines)
# Fix: unnecessary Unicode
df[column] = df[column].apply(fix.unnecessary_unicode)
# Check: invalid multi-value separator
df[column] = df[column].apply(check.separators)
# Check: suspicious characters
df[column] = df[column].apply(check.suspicious_characters)
# Fix: invalid multi-value separator
if args.unsafe_fixes:
df[column] = df[column].apply(fix.separators)
# Run whitespace fix again after fixing invalid separators
df[column] = df[column].apply(fix.whitespace)
# Fix: duplicate metadata values
df[column] = df[column].apply(fix.duplicates)
# Check: invalid AGROVOC subject
match = re.match(r'.*?dc\.subject.*$', column)
if match is not None:
df[column] = df[column].apply(check.agrovoc)
# Check: invalid language
match = re.match(r'^.*?language.*$', column)
if match is not None:
df[column] = df[column].apply(check.language)
# Check: invalid ISSN
match = re.match(r'^.*?issn.*$', column)
if match is not None:
df[column] = df[column].apply(check.issn)
# Check: invalid ISBN
match = re.match(r'^.*?isbn.*$', column)
if match is not None:
df[column] = df[column].apply(check.isbn)
# Check: invalid date
match = re.match(r'^.*?date.*$', column)
if match is not None:
df[column] = df[column].apply(check.date)
# Write
df.to_csv(args.output_file, index=False)