mirror of
https://github.com/ilri/csv-metadata-quality.git
synced 2024-11-18 12:07:03 +01:00
Alan Orth
40e77db713
In this case it fixes occurences of invalid multi-value separators. DSpace uses "||" to separate multiple values in one field, but our editors sometimes give us files with mistakes like "|". We can fix these to be correct multi-value separators if we are sure that the metadata is not actually using "|" for some legitimate purpose.
55 lines
2.1 KiB
Python
55 lines
2.1 KiB
Python
import argparse
|
|
import csv_metadata_quality.check as check
|
|
import csv_metadata_quality.fix as fix
|
|
import pandas as pd
|
|
import re
|
|
|
|
|
|
def parse_args(argv):
|
|
parser = argparse.ArgumentParser(description='Metadata quality checker and fixer.')
|
|
parser.add_argument('--input-file', '-i', help='Path to input file. Can be UTF-8 CSV or Excel XLSX.', required=True, type=argparse.FileType('r', encoding='UTF-8'))
|
|
parser.add_argument('--output-file', '-o', help='Path to output file (always CSV).', required=True, type=argparse.FileType('w', encoding='UTF-8'))
|
|
parser.add_argument('--unsafe-fixes', '-u', help='Perform unsafe fixes.', action='store_true')
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def main(argv):
|
|
args = parse_args(argv)
|
|
|
|
# Read all fields as strings so dates don't get converted from 1998 to 1998.0
|
|
df = pd.read_csv(args.input_file, dtype=str)
|
|
|
|
# Fix whitespace in all columns
|
|
for column in df.columns.values.tolist():
|
|
# Run whitespace fix on all columns
|
|
df[column] = df[column].apply(fix.whitespace)
|
|
|
|
# Run invalid multi-value separator check on all columns
|
|
df[column] = df[column].apply(check.separators)
|
|
|
|
# Run invalid multi-value separator fix on all columns
|
|
if args.unsafe_fixes:
|
|
df[column] = df[column].apply(fix.separators)
|
|
# Run whitespace fix again after fixing invalid separators
|
|
df[column] = df[column].apply(fix.whitespace)
|
|
|
|
# check if column is an issn column like dc.identifier.issn
|
|
match = re.match(r'^.*?issn.*$', column)
|
|
if match is not None:
|
|
df[column] = df[column].apply(check.issn)
|
|
|
|
# check if column is an isbn column like dc.identifier.isbn
|
|
match = re.match(r'^.*?isbn.*$', column)
|
|
if match is not None:
|
|
df[column] = df[column].apply(check.isbn)
|
|
|
|
# check if column is a date column like dc.date.issued
|
|
match = re.match(r'^.*?date.*$', column)
|
|
if match is not None:
|
|
df[column] = df[column].apply(check.date)
|
|
|
|
# Write
|
|
df.to_csv(args.output_file, index=False)
|