import csv_metadata_quality.check as check import csv_metadata_quality.fix as fix import pandas as pd import re def main(): # Read all fields as strings so dates don't get converted from 1998 to 1998.0 #df = pd.read_csv('/home/aorth/Downloads/2019-07-26-Bioversity-Migration.csv', dtype=str) #df = pd.read_csv('/tmp/quality.csv', dtype=str) df = pd.read_csv('data/test.csv', dtype=str) # Fix whitespace in all columns for column in df.columns.values.tolist(): # Run whitespace fix on all columns df[column] = df[column].apply(fix.whitespace) # Run invalid multi-value separator check on all columns df[column] = df[column].apply(check.separators) # check if column is an issn column like dc.identifier.issn match = re.match(r'^.*?issn.*$', column) if match is not None: df[column] = df[column].apply(check.issn) # check if column is an isbn column like dc.identifier.isbn match = re.match(r'^.*?isbn.*$', column) if match is not None: df[column] = df[column].apply(check.isbn) # check if column is a date column like dc.date.issued match = re.match(r'^.*?date.*$', column) if match is not None: df[column] = df[column].apply(check.date) # Write df.to_csv('/tmp/test.fixed.csv', index=False)