import argparse import csv_metadata_quality.check as check import csv_metadata_quality.fix as fix import pandas as pd import re def parse_args(argv): parser = argparse.ArgumentParser(description='Metadata quality checker and fixer.') parser.add_argument('--input-file', '-i', help='Path to input file. Can be UTF-8 CSV or Excel XLSX.', required=True, type=argparse.FileType('r', encoding='UTF-8')) parser.add_argument('--output-file', '-o', help='Path to output file (always CSV).', required=True, type=argparse.FileType('w', encoding='UTF-8')) args = parser.parse_args() return args def main(argv): args = parse_args(argv) # Read all fields as strings so dates don't get converted from 1998 to 1998.0 df = pd.read_csv(args.input_file, dtype=str) # Fix whitespace in all columns for column in df.columns.values.tolist(): # Run whitespace fix on all columns df[column] = df[column].apply(fix.whitespace) # Run invalid multi-value separator check on all columns df[column] = df[column].apply(check.separators) # check if column is an issn column like dc.identifier.issn match = re.match(r'^.*?issn.*$', column) if match is not None: df[column] = df[column].apply(check.issn) # check if column is an isbn column like dc.identifier.isbn match = re.match(r'^.*?isbn.*$', column) if match is not None: df[column] = df[column].apply(check.isbn) # check if column is a date column like dc.date.issued match = re.match(r'^.*?date.*$', column) if match is not None: df[column] = df[column].apply(check.date) # Write df.to_csv(args.output_file, index=False)