1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2024-11-22 05:45:02 +01:00

Experimental language detection using langid

Works decenty well assuming the title, abstract, and citation fields
are an accurate representation of the language as identified by the
language field. Handles ISO 639-1 (alpha 2) and ISO 639-3 (alpha 3)
values seamlessly.

This includes updated pipenv environment, test data, pytest tests
for both correct and incorrect ISO 639-1 and ISO 639-3 languages,
and a new command line option "-e".
This commit is contained in:
Alan Orth 2019-09-24 18:55:05 +03:00
parent 7ac1c6f554
commit 8435ee242d
Signed by: alanorth
GPG Key ID: 0FB860CC9C45B1B9
5 changed files with 186 additions and 0 deletions

View File

@ -20,6 +20,7 @@ requests = "*"
requests-cache = "*" requests-cache = "*"
pycountry = "*" pycountry = "*"
csv-metadata-quality = {editable = true,path = "."} csv-metadata-quality = {editable = true,path = "."}
langid = "*"
[requires] [requires]
python_version = "3.7" python_version = "3.7"

View File

@ -6,6 +6,7 @@ import sys
import pandas as pd import pandas as pd
import csv_metadata_quality.check as check import csv_metadata_quality.check as check
import csv_metadata_quality.experimental as experimental
import csv_metadata_quality.fix as fix import csv_metadata_quality.fix as fix
from csv_metadata_quality.version import VERSION from csv_metadata_quality.version import VERSION
@ -17,6 +18,11 @@ def parse_args(argv):
"-a", "-a",
help="Comma-separated list of fields to validate against AGROVOC, for example: dc.subject,cg.coverage.country", help="Comma-separated list of fields to validate against AGROVOC, for example: dc.subject,cg.coverage.country",
) )
parser.add_argument(
"--experimental-checks",
"-e",
help="Enable experimental checks like language detection", action="store_true"
)
parser.add_argument( parser.add_argument(
"--input-file", "--input-file",
"-i", "-i",
@ -137,6 +143,24 @@ def run(argv):
if column == "filename": if column == "filename":
df[column] = df[column].apply(check.filename_extension) df[column] = df[column].apply(check.filename_extension)
##
# Perform some checks on rows so we can consider items as a whole rather
# than simple on a field-by-field basis. This allows us to check whether
# the language used in the title and abstract matches the language indi-
# cated in the language field, for example.
#
# This is slower and apparently frowned upon in the Pandas community be-
# cause it requires iterating over rows rather than using apply over a
# column. For now it will have to do.
##
if args.experimental_checks:
# Transpose the DataFrame so we can consider each row as a column
df_transposed = df.T
for column in df_transposed.columns:
experimental.correct_language(df_transposed[column])
# Write # Write
df.to_csv(args.output_file, index=False) df.to_csv(args.output_file, index=False)

View File

@ -0,0 +1,95 @@
import pandas as pd
def correct_language(row):
"""Analyze the text used in the title, abstract, and citation fields to pre-
dict the language being used and compare it with the item's dc.language.iso
field.
Function prints an error if the language field does not match the detected
language and returns the value in the language field if it does match.
"""
from pycountry import languages
import langid
import re
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
language = ""
sample_strings = list()
title = None
# Iterate over the labels of the current row's values. Before we transposed
# the DataFrame these were the columns in the CSV, ie dc.title and dc.type.
for label in row.axes[0]:
# Skip fields with missing values
if pd.isna(row[label]):
continue
# Check if current row has multiple language values (separated by "||")
match = re.match(r"^.*?language.*$", label)
if match is not None:
# Skip fields with multiple language values
if "||" in row[label]:
return
language = row[label]
# Extract title if it is present
match = re.match(r"^.*?title.*$", label)
if match is not None:
title = row[label]
# Append title to sample strings
sample_strings.append(row[label])
# Extract abstract if it is present
match = re.match(r"^.*?abstract.*$", label)
if match is not None:
sample_strings.append(row[label])
# Extract citation if it is present
match = re.match(r"^.*?citation.*$", label)
if match is not None:
sample_strings.append(row[label])
# Make sure language is not blank and is valid ISO 639-1/639-3 before proceeding with language prediction
if language != "":
# Check language value like "es"
if len(language) == 2:
if not languages.get(alpha_2=language):
return
# Check language value like "spa"
elif len(language) == 3:
if not languages.get(alpha_3=language):
return
# Language value is something else like "Span", do not proceed
else:
return
# Language is blank, do not proceed
else:
return
# Concatenate all sample strings into one string
sample_text = " ".join(sample_strings)
# Restrict the langid detection space to reduce false positives
langid.set_languages(
["ar", "de", "en", "es", "fr", "hi", "it", "ja", "ko", "pt", "ru", "vi", "zh"]
)
langid_classification = langid.classify(sample_text)
# langid returns an ISO 639-1 (alpha 2) representation of the detected language, but the current item's language field might be ISO 639-3 (alpha 3) so we should use a pycountry Language object to compare both represenations and give appropriate error messages that match the format used by in the input file.
detected_language = languages.get(alpha_2=langid_classification[0])
if len(language) == 2 and language != detected_language.alpha_2:
print(
f"Possibly incorrect language {language} (detected {detected_language.alpha_2}): {title}"
)
elif len(language) == 3 and language != detected_language.alpha_3:
print(
f"Possibly incorrect language {language} (detected {detected_language.alpha_3}): {title}"
)
else:
return language

View File

@ -24,3 +24,5 @@ Invalid country,2019-08-01,,,,,KENYAA,
Uncommon filename extension,2019-08-10,,,,,,file.pdf.lck Uncommon filename extension,2019-08-10,,,,,,file.pdf.lck
Unneccesary unicode (U+002D + U+00AD),2019-08-10,,978-­92-­9043-­823-­6,,,, Unneccesary unicode (U+002D + U+00AD),2019-08-10,,978-­92-­9043-­823-­6,,,,
"Missing space,after comma",2019-08-27,,,,,, "Missing space,after comma",2019-08-27,,,,,,
Incorrect ISO 639-1 language,2019-09-26,,,es,,,
Incorrect ISO 639-3 language,2019-09-26,,,spa,,,

1 dc.title birthdate dc.identifier.issn dc.identifier.isbn dc.language.iso dc.subject cg.coverage.country filename
24 Unneccesary unicode (U+002D + U+00AD) 2019-08-10 978-­92-­9043-­823-­6
25 Missing space,after comma 2019-08-27
26 Incorrect ISO 639-1 language 2019-09-26 es
27 Incorrect ISO 639-3 language 2019-09-26 spa
28

View File

@ -1,4 +1,6 @@
import csv_metadata_quality.check as check import csv_metadata_quality.check as check
import csv_metadata_quality.experimental as experimental
import pandas as pd
def test_check_invalid_issn(capsys): def test_check_invalid_issn(capsys):
@ -223,3 +225,65 @@ def test_check_common_filename_extension():
result = check.filename_extension(value) result = check.filename_extension(value)
assert result == value assert result == value
def test_check_incorrect_iso_639_1_language(capsys):
'''Test incorrect ISO 639-1 language, as determined by comparing the item's language field with the actual language predicted in the item's title.'''
title = 'A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle'
language = 'es'
# Create a dictionary to mimic Pandas series
row = {'dc.title': title, 'dc.language.iso': language}
series = pd.Series(row)
experimental.correct_language(series)
captured = capsys.readouterr()
assert captured.out == f'Possibly incorrect language {language} (detected en): {title}\n'
def test_check_incorrect_iso_639_3_language(capsys):
'''Test incorrect ISO 639-3 language, as determined by comparing the item's language field with the actual language predicted in the item's title.'''
title = 'A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle'
language = 'spa'
# Create a dictionary to mimic Pandas series
row = {'dc.title': title, 'dc.language.iso': language}
series = pd.Series(row)
experimental.correct_language(series)
captured = capsys.readouterr()
assert captured.out == f'Possibly incorrect language {language} (detected eng): {title}\n'
def test_check_correct_iso_639_1_language():
'''Test correct ISO 639-1 language, as determined by comparing the item's language field with the actual language predicted in the item's title.'''
title = 'A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle'
language = 'en'
# Create a dictionary to mimic Pandas series
row = {'dc.title': title, 'dc.language.iso': language}
series = pd.Series(row)
result = experimental.correct_language(series)
assert result == language
def test_check_correct_iso_639_3_language():
'''Test correct ISO 639-3 language, as determined by comparing the item's language field with the actual language predicted in the item's title.'''
title = 'A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle'
language = 'eng'
# Create a dictionary to mimic Pandas series
row = {'dc.title': title, 'dc.language.iso': language}
series = pd.Series(row)
result = experimental.correct_language(series)
assert result == language