1
0
mirror of https://github.com/ilri/csv-metadata-quality.git synced 2024-12-21 11:42:20 +01:00

Add unsafe check to add missing regions

This commit is contained in:
Alan Orth 2022-07-28 16:52:43 +03:00
parent 344993370c
commit 689ee184f7
Signed by: alanorth
GPG Key ID: 0FB860CC9C45B1B9
3 changed files with 124 additions and 3 deletions

View File

@ -205,14 +205,23 @@ def run(argv):
# Check: title in citation # Check: title in citation
check.title_in_citation(df_transposed[column]) check.title_in_citation(df_transposed[column])
# Check: countries match regions if args.unsafe_fixes:
check.countries_match_regions(df_transposed[column]) # Fix: countries match regions
df_transposed[column] = fix.countries_match_regions(df_transposed[column])
else:
# Check: countries match regions
check.countries_match_regions(df_transposed[column])
if args.experimental_checks: if args.experimental_checks:
experimental.correct_language(df_transposed[column]) experimental.correct_language(df_transposed[column])
# Transpose the DataFrame back before writing. This is probably wasteful to
# do every time since we technically only need to do it if we've done the
# countries/regions fix above, but I can't think of another way for now.
df_transposed_back = df_transposed.T
# Write # Write
df.to_csv(args.output_file, index=False) df_transposed_back.to_csv(args.output_file, index=False)
# Close the input and output files before exiting # Close the input and output files before exiting
args.input_file.close() args.input_file.close()

View File

@ -3,6 +3,7 @@
import re import re
from unicodedata import normalize from unicodedata import normalize
import country_converter as coco
import pandas as pd import pandas as pd
from colorama import Fore from colorama import Fore
from ftfy import TextFixerConfig, fix_text from ftfy import TextFixerConfig, fix_text
@ -289,3 +290,83 @@ def mojibake(field, field_name):
return fix_text(field, config) return fix_text(field, config)
else: else:
return field return field
def countries_match_regions(row):
"""Check for the scenario where an item has country coverage metadata, but
does not have the corresponding region metadata. For example, an item that
has country coverage "Kenya" should also have region "Eastern Africa" acc-
ording to the UN M.49 classification scheme.
See: https://unstats.un.org/unsd/methodology/m49/
Return fixed string.
"""
# Initialize some variables at global scope so that we can set them in the
# loop scope below and still be able to access them afterwards.
country_column_name = ""
region_column_name = ""
title_column_name = ""
# Iterate over the labels of the current row's values to get the names of
# the title and citation columns. Then we check if the title is present in
# the citation.
for label in row.axes[0]:
# Find the name of the country column
match = re.match(r"^.*?country.*$", label)
if match is not None:
country_column_name = label
# Find the name of the region column
match = re.match(r"^.*?region.*$", label)
if match is not None:
region_column_name = label
# Find the name of the title column
match = re.match(r"^(dc|dcterms)\.title.*$", label)
if match is not None:
title_column_name = label
# Make sure we found the country and region columns
if country_column_name != "" and region_column_name != "":
# If we don't have any countries then we should return early before
# suggesting regions.
if row[country_column_name] is not None:
countries = row[country_column_name].split("||")
else:
return
if row[region_column_name] is not None:
regions = row[region_column_name].split("||")
else:
regions = list()
# An empty list for our regions so we can keep track for all countries
missing_regions = list()
for country in countries:
# Look up the UN M.49 regions for this country code. CoCo seems to
# only list the direct region, ie Western Africa, rather than all
# the parent regions ("Sub-Saharan Africa", "Africa", "World")
un_region = coco.convert(names=country, to="UNRegion")
if un_region not in regions:
if un_region not in missing_regions:
missing_regions.append(un_region)
if len(missing_regions) > 0:
for missing_region in missing_regions:
print(
f"{Fore.YELLOW}Adding missing region ({missing_region}): {Fore.RESET}{row[title_column_name]}"
)
# Add the missing regions back to the row, paying attention to whether
# or not the row's regions are blank or not.
if row[region_column_name] is not None:
row[region_column_name] = row[region_column_name] + "||".join(
missing_regions
)
else:
row[region_column_name] = "||".join(missing_regions)
return row

View File

@ -1,5 +1,7 @@
# SPDX-License-Identifier: GPL-3.0-only # SPDX-License-Identifier: GPL-3.0-only
import pandas as pd
import csv_metadata_quality.fix as fix import csv_metadata_quality.fix as fix
@ -120,3 +122,32 @@ def test_fix_mojibake():
field_name = "dcterms.isPartOf" field_name = "dcterms.isPartOf"
assert fix.mojibake(field, field_name) == "CIAT Publicaçao" assert fix.mojibake(field, field_name) == "CIAT Publicaçao"
def test_fix_country_not_matching_region():
"""Test an item with regions not matching its country list."""
title = "Testing an item with no matching region."
country = "Kenya"
region = ""
missing_region = "Eastern Africa"
# Emulate a column in a transposed dataframe (which is just a series)
d = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": region,
}
series = pd.Series(data=d)
result = fix.countries_match_regions(series)
# Emulate the correct series we are expecting
d_correct = {
"dc.title": title,
"cg.coverage.country": country,
"cg.coverage.region": missing_region,
}
series_correct = pd.Series(data=d_correct)
pd.testing.assert_series_equal(result, series_correct)