2019-07-26 21:11:10 +02:00
|
|
|
import re
|
2020-10-06 16:11:39 +02:00
|
|
|
from unicodedata import normalize
|
2019-07-26 21:11:10 +02:00
|
|
|
|
2019-08-29 00:15:04 +02:00
|
|
|
import pandas as pd
|
2021-02-21 12:01:25 +01:00
|
|
|
from colorama import Fore
|
2019-08-29 00:15:04 +02:00
|
|
|
|
2020-10-06 16:11:39 +02:00
|
|
|
from csv_metadata_quality.util import is_nfc
|
|
|
|
|
2019-07-28 16:47:28 +02:00
|
|
|
|
2020-01-16 11:35:11 +01:00
|
|
|
def whitespace(field, field_name):
|
2019-07-26 18:08:28 +02:00
|
|
|
"""Fix whitespace issues.
|
|
|
|
|
|
|
|
Return string with leading, trailing, and consecutive whitespace trimmed.
|
|
|
|
"""
|
|
|
|
|
2019-07-26 18:31:55 +02:00
|
|
|
# Skip fields with missing values
|
|
|
|
if pd.isna(field):
|
2019-07-26 18:08:28 +02:00
|
|
|
return
|
|
|
|
|
2019-07-26 18:31:55 +02:00
|
|
|
# Initialize an empty list to hold the cleaned values
|
|
|
|
values = list()
|
2019-07-26 18:08:28 +02:00
|
|
|
|
2019-07-26 18:31:55 +02:00
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
for value in field.split("||"):
|
2019-07-26 18:31:55 +02:00
|
|
|
# Strip leading and trailing whitespace
|
|
|
|
value = value.strip()
|
2019-07-26 18:08:28 +02:00
|
|
|
|
2019-07-26 18:31:55 +02:00
|
|
|
# Replace excessive whitespace (>2) with one space
|
2019-08-29 00:10:39 +02:00
|
|
|
pattern = re.compile(r"\s{2,}")
|
2019-07-26 18:31:55 +02:00
|
|
|
match = re.findall(pattern, value)
|
2019-07-26 18:08:28 +02:00
|
|
|
|
2019-07-29 15:16:30 +02:00
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(
|
|
|
|
f"{Fore.GREEN}Removing excessive whitespace ({field_name}): {Fore.RESET}{value}"
|
|
|
|
)
|
2019-08-29 00:10:39 +02:00
|
|
|
value = re.sub(pattern, " ", value)
|
2019-07-26 18:08:28 +02:00
|
|
|
|
2019-07-26 18:31:55 +02:00
|
|
|
# Save cleaned value
|
|
|
|
values.append(value)
|
2019-07-26 18:08:28 +02:00
|
|
|
|
2019-07-26 18:31:55 +02:00
|
|
|
# Create a new field consisting of all values joined with "||"
|
2019-08-29 00:10:39 +02:00
|
|
|
new_field = "||".join(values)
|
2019-07-26 18:08:28 +02:00
|
|
|
|
2019-07-26 18:31:55 +02:00
|
|
|
return new_field
|
2019-07-28 21:53:39 +02:00
|
|
|
|
|
|
|
|
2020-01-16 11:35:11 +01:00
|
|
|
def separators(field, field_name):
|
2021-01-03 14:30:03 +01:00
|
|
|
"""Fix for invalid and unnecessary multi-value separators, for example:
|
|
|
|
|
|
|
|
value|value
|
|
|
|
value|||value
|
|
|
|
value||value||
|
|
|
|
|
|
|
|
Prints the field with the invalid multi-value separator.
|
|
|
|
"""
|
2019-07-28 21:53:39 +02:00
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
if pd.isna(field):
|
|
|
|
return
|
|
|
|
|
|
|
|
# Initialize an empty list to hold the cleaned values
|
|
|
|
values = list()
|
|
|
|
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
for value in field.split("||"):
|
2021-01-03 14:30:03 +01:00
|
|
|
# Check if the value is blank and skip it
|
|
|
|
if value == "":
|
2021-02-21 12:01:25 +01:00
|
|
|
print(
|
|
|
|
f"{Fore.GREEN}Fixing unnecessary multi-value separator ({field_name}): {Fore.RESET}{field}"
|
|
|
|
)
|
2021-01-03 14:30:03 +01:00
|
|
|
|
|
|
|
continue
|
|
|
|
|
2019-07-28 21:53:39 +02:00
|
|
|
# After splitting, see if there are any remaining "|" characters
|
2019-08-29 00:10:39 +02:00
|
|
|
pattern = re.compile(r"\|")
|
2019-07-28 21:53:39 +02:00
|
|
|
match = re.findall(pattern, value)
|
|
|
|
|
2019-07-29 15:16:30 +02:00
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(
|
2021-03-11 10:47:24 +01:00
|
|
|
f"{Fore.GREEN}Fixing invalid multi-value separator ({field_name}): {Fore.RESET}{value}"
|
2021-02-21 12:01:25 +01:00
|
|
|
)
|
2019-07-28 21:53:39 +02:00
|
|
|
|
2019-08-29 00:10:39 +02:00
|
|
|
value = re.sub(pattern, "||", value)
|
2019-07-28 21:53:39 +02:00
|
|
|
|
|
|
|
# Save cleaned value
|
|
|
|
values.append(value)
|
|
|
|
|
|
|
|
# Create a new field consisting of all values joined with "||"
|
2019-08-29 00:10:39 +02:00
|
|
|
new_field = "||".join(values)
|
2019-07-28 21:53:39 +02:00
|
|
|
|
|
|
|
return new_field
|
2019-07-29 15:38:10 +02:00
|
|
|
|
|
|
|
|
|
|
|
def unnecessary_unicode(field):
|
2019-08-10 23:07:21 +02:00
|
|
|
"""Remove and replace unnecessary Unicode characters.
|
2019-07-29 15:38:10 +02:00
|
|
|
|
|
|
|
Removes unnecessary Unicode characters like:
|
|
|
|
- Zero-width space (U+200B)
|
|
|
|
- Replacement character (U+FFFD)
|
|
|
|
|
2019-08-10 23:07:21 +02:00
|
|
|
Replaces unnecessary Unicode characters like:
|
|
|
|
- Soft hyphen (U+00AD) → hyphen
|
2019-10-01 15:55:04 +02:00
|
|
|
- No-break space (U+00A0) → space
|
2019-08-10 23:07:21 +02:00
|
|
|
|
|
|
|
Return string with characters removed or replaced.
|
2019-07-29 15:38:10 +02:00
|
|
|
"""
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
if pd.isna(field):
|
|
|
|
return
|
|
|
|
|
|
|
|
# Check for zero-width space characters (U+200B)
|
2019-08-29 00:10:39 +02:00
|
|
|
pattern = re.compile(r"\u200B")
|
2019-07-29 15:38:10 +02:00
|
|
|
match = re.findall(pattern, field)
|
|
|
|
|
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(f"{Fore.GREEN}Removing unnecessary Unicode (U+200B): {Fore.RESET}{field}")
|
2019-08-29 00:10:39 +02:00
|
|
|
field = re.sub(pattern, "", field)
|
2019-07-29 15:38:10 +02:00
|
|
|
|
|
|
|
# Check for replacement characters (U+FFFD)
|
2019-08-29 00:10:39 +02:00
|
|
|
pattern = re.compile(r"\uFFFD")
|
2019-07-29 15:38:10 +02:00
|
|
|
match = re.findall(pattern, field)
|
|
|
|
|
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(f"{Fore.GREEN}Removing unnecessary Unicode (U+FFFD): {Fore.RESET}{field}")
|
2019-08-29 00:10:39 +02:00
|
|
|
field = re.sub(pattern, "", field)
|
2019-07-29 15:38:10 +02:00
|
|
|
|
|
|
|
# Check for no-break spaces (U+00A0)
|
2019-08-29 00:10:39 +02:00
|
|
|
pattern = re.compile(r"\u00A0")
|
2019-07-29 15:38:10 +02:00
|
|
|
match = re.findall(pattern, field)
|
|
|
|
|
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(
|
|
|
|
f"{Fore.GREEN}Replacing unnecessary Unicode (U+00A0): {Fore.RESET}{field}"
|
|
|
|
)
|
2019-10-01 15:55:04 +02:00
|
|
|
field = re.sub(pattern, " ", field)
|
2019-07-29 15:38:10 +02:00
|
|
|
|
2019-08-10 23:07:21 +02:00
|
|
|
# Check for soft hyphens (U+00AD), sometimes preceeded with a normal hyphen
|
2019-08-29 00:10:39 +02:00
|
|
|
pattern = re.compile(r"\u002D*?\u00AD")
|
2019-08-10 23:07:21 +02:00
|
|
|
match = re.findall(pattern, field)
|
|
|
|
|
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(
|
|
|
|
f"{Fore.GREEN}Replacing unnecessary Unicode (U+00AD): {Fore.RESET}{field}"
|
|
|
|
)
|
2019-08-29 00:10:39 +02:00
|
|
|
field = re.sub(pattern, "-", field)
|
2019-08-10 23:07:21 +02:00
|
|
|
|
2019-07-29 15:38:10 +02:00
|
|
|
return field
|
2019-07-29 17:05:03 +02:00
|
|
|
|
|
|
|
|
2020-01-16 11:35:11 +01:00
|
|
|
def duplicates(field, field_name):
|
2019-07-29 17:05:03 +02:00
|
|
|
"""Remove duplicate metadata values."""
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
if pd.isna(field):
|
|
|
|
return
|
|
|
|
|
|
|
|
# Try to split multi-value field on "||" separator
|
2019-08-29 00:10:39 +02:00
|
|
|
values = field.split("||")
|
2019-07-29 17:05:03 +02:00
|
|
|
|
|
|
|
# Initialize an empty list to hold the de-duplicated values
|
|
|
|
new_values = list()
|
|
|
|
|
|
|
|
# Iterate over all values
|
|
|
|
for value in values:
|
|
|
|
# Check if each value exists in our list of values already
|
|
|
|
if value not in new_values:
|
|
|
|
new_values.append(value)
|
|
|
|
else:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(
|
|
|
|
f"{Fore.GREEN}Removing duplicate value ({field_name}): {Fore.RESET}{value}"
|
|
|
|
)
|
2019-07-29 17:05:03 +02:00
|
|
|
|
|
|
|
# Create a new field consisting of all values joined with "||"
|
2019-08-29 00:10:39 +02:00
|
|
|
new_field = "||".join(new_values)
|
2019-07-29 17:05:03 +02:00
|
|
|
|
|
|
|
return new_field
|
2019-07-30 19:05:12 +02:00
|
|
|
|
|
|
|
|
|
|
|
def newlines(field):
|
|
|
|
"""Fix newlines.
|
|
|
|
|
|
|
|
Single metadata values should not span multiple lines because this is not
|
|
|
|
rendered properly in DSpace's XMLUI and even causes issues during import.
|
|
|
|
|
|
|
|
Implementation note: this currently only detects Unix line feeds (0x0a).
|
|
|
|
This is essentially when a user presses "Enter" to move to the next line.
|
|
|
|
Other newlines like the Windows carriage return are already handled with
|
|
|
|
the string stipping performed in the whitespace fixes.
|
|
|
|
|
|
|
|
Confusingly, in Vim '\n' matches a line feed when searching, but you must
|
|
|
|
use '\r' to *insert* a line feed, ie in a search and replace expression.
|
|
|
|
|
|
|
|
Return string with newlines removed.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
if pd.isna(field):
|
|
|
|
return
|
|
|
|
|
|
|
|
# Check for Unix line feed (LF)
|
2019-08-29 00:10:39 +02:00
|
|
|
match = re.findall(r"\n", field)
|
2019-07-30 19:05:12 +02:00
|
|
|
|
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(f"{Fore.GREEN}Removing newline: {Fore.RESET}{field}")
|
2019-08-29 00:10:39 +02:00
|
|
|
field = field.replace("\n", "")
|
2019-07-30 19:05:12 +02:00
|
|
|
|
|
|
|
return field
|
2019-08-27 23:05:52 +02:00
|
|
|
|
|
|
|
|
|
|
|
def comma_space(field, field_name):
|
|
|
|
"""Fix occurrences of commas missing a trailing space, for example:
|
|
|
|
|
|
|
|
Orth,Alan S.
|
|
|
|
|
|
|
|
This is a very common mistake in author and citation fields.
|
|
|
|
|
|
|
|
Return string with a space added.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
if pd.isna(field):
|
|
|
|
return
|
|
|
|
|
|
|
|
# Check for comma followed by a word character
|
2019-08-29 00:10:39 +02:00
|
|
|
match = re.findall(r",\w", field)
|
2019-08-27 23:05:52 +02:00
|
|
|
|
|
|
|
if match:
|
2021-02-21 12:01:25 +01:00
|
|
|
print(
|
|
|
|
f"{Fore.GREEN}Adding space after comma ({field_name}): {Fore.RESET}{field}"
|
|
|
|
)
|
2019-08-29 00:10:39 +02:00
|
|
|
field = re.sub(r",(\w)", r", \1", field)
|
2019-08-27 23:05:52 +02:00
|
|
|
|
|
|
|
return field
|
2020-01-15 10:37:54 +01:00
|
|
|
|
|
|
|
|
|
|
|
def normalize_unicode(field, field_name):
|
|
|
|
"""Fix occurrences of decomposed Unicode characters by normalizing them
|
|
|
|
with NFC to their canonical forms, for example:
|
|
|
|
|
|
|
|
Ouédraogo, Mathieu → Ouédraogo, Mathieu
|
|
|
|
|
|
|
|
Return normalized string.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Skip fields with missing values
|
|
|
|
if pd.isna(field):
|
|
|
|
return
|
|
|
|
|
|
|
|
# Check if the current string is using normalized Unicode (NFC)
|
2020-01-15 11:17:52 +01:00
|
|
|
if not is_nfc(field):
|
2021-02-21 12:01:25 +01:00
|
|
|
print(f"{Fore.GREEN}Normalizing Unicode ({field_name}): {Fore.RESET}{field}")
|
2020-01-15 10:37:54 +01:00
|
|
|
field = normalize("NFC", field)
|
|
|
|
|
|
|
|
return field
|