Add notes for 2019-07-09

This commit is contained in:
2019-07-09 18:39:15 +03:00
parent b89bb22534
commit 5353ceb221
3 changed files with 85 additions and 8 deletions

View File

@ -161,5 +161,42 @@ $ ./fix-metadata-values.py -i 2019-07-04-update-orcids.csv -db dspace -u dspace
- Meeting with AgroKnow and CTA about their new ICT Update story telling thing
- AgroKnow has developed a React application to display tag clouds based on harvesting metadata and full text from CGSpace items
- We discussed how to host it technically, perhaps we purchase a server to run it on and just give AgroKnow guys access
- Playing with the idea of using [xsv](https://github.com/BurntSushi/xsv) to do some basic batch quality checks on CSVs, for example to find items that might be duplicates if they have the same DOI or title:
```
$ xsv frequency --select cg.identifier.doi --no-nulls cgspace_metadata_africaRice-11to73_ay_id.csv | grep -v -E ',1'
field,value,count
cg.identifier.doi,https://doi.org/10.1016/j.agwat.2018.06.018,2
$ xsv frequency --select dc.title --no-nulls cgspace_metadata_africaRice-11to73_ay_id.csv | grep -v -E ',1'
field,value,count
dc.title,Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso,2
```
- Or perhaps if DOIs are valid or not (having doi.org in the URL):
```
$ xsv frequency --select cg.identifier.doi --no-nulls cgspace_metadata_africaRice-11to73_ay_id.csv | grep -v -E 'doi.org'
field,value,count
cg.identifier.doi,https://hdl.handle.net/10520/EJC-1236ac700f,1
```
- Or perhaps items with invalid ISSNs (according to the [ISSN code format](https://en.wikipedia.org/wiki/International_Standard_Serial_Number#Code_format)):
```
$ xsv select dc.identifier.issn cgspace_metadata_africaRice-11to73_ay_id.csv | grep -v '"' | grep -v -E '^[0-9]{4}-[0-9]{3}[0-9xX]$'
dc.identifier.issn
978-3-319-71997-9
978-3-319-71997-9
978-3-319-71997-9
978-3-319-58789-9
2320-7035
2593-9173
```
## 2019-07-09
- Thinking about data cleaning automation again and found some resources about Python and Pandas:
- https://realpython.com/python-data-cleaning-numpy-pandas/
- https://mode.com/blog/python-data-cleaning-libraries
<!-- vim: set sw=2 ts=2: -->